Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024687090> ?p ?o ?g. }
- W2024687090 endingPage "979" @default.
- W2024687090 startingPage "969" @default.
- W2024687090 abstract "Recently, nonnegative matrix factorization (NMF) has become increasingly popular for feature extraction in computer vision and pattern recognition. NMF seeks two nonnegative matrices whose product can best approximate the original matrix. The nonnegativity constraints lead to sparse parts-based representations that can be more robust than nonsparse global features. To obtain more accurate control over the sparseness, in this paper, we propose a novel method called nonnegative local coordinate factorization (NLCF) for feature extraction. NLCF adds a local coordinate constraint into the standard NMF objective function. Specifically, we require that the learned basis vectors be as close to the original data points as possible. In this way, each data point can be represented by a linear combination of only a few nearby basis vectors, which naturally leads to sparse representation. Extensive experimental results suggest that the proposed approach provides a better representation and achieves higher accuracy in image clustering." @default.
- W2024687090 created "2016-06-24" @default.
- W2024687090 creator A5029860349 @default.
- W2024687090 creator A5037942269 @default.
- W2024687090 creator A5041119793 @default.
- W2024687090 creator A5071037763 @default.
- W2024687090 creator A5089722002 @default.
- W2024687090 date "2013-03-01" @default.
- W2024687090 modified "2023-10-18" @default.
- W2024687090 title "Nonnegative Local Coordinate Factorization for Image Representation" @default.
- W2024687090 cites W1902027874 @default.
- W2024687090 cites W1963824025 @default.
- W2024687090 cites W1976645892 @default.
- W2024687090 cites W2011395874 @default.
- W2024687090 cites W2027922120 @default.
- W2024687090 cites W2036926179 @default.
- W2024687090 cites W2048393261 @default.
- W2024687090 cites W2059745395 @default.
- W2024687090 cites W2066058128 @default.
- W2024687090 cites W2080370442 @default.
- W2024687090 cites W2105464873 @default.
- W2024687090 cites W2108119513 @default.
- W2024687090 cites W2112104211 @default.
- W2024687090 cites W2116216716 @default.
- W2024687090 cites W2129812935 @default.
- W2024687090 cites W2132538571 @default.
- W2024687090 cites W2135081536 @default.
- W2024687090 cites W2136635436 @default.
- W2024687090 cites W2136948085 @default.
- W2024687090 cites W2143688709 @default.
- W2024687090 cites W2144730066 @default.
- W2024687090 cites W2145889472 @default.
- W2024687090 cites W2147152072 @default.
- W2024687090 cites W2149623757 @default.
- W2024687090 cites W2165685007 @default.
- W2024687090 cites W2167686991 @default.
- W2024687090 cites W2169658215 @default.
- W2024687090 cites W4214649671 @default.
- W2024687090 cites W4233135949 @default.
- W2024687090 cites W4240959780 @default.
- W2024687090 doi "https://doi.org/10.1109/tip.2012.2224357" @default.
- W2024687090 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23076045" @default.
- W2024687090 hasPublicationYear "2013" @default.
- W2024687090 type Work @default.
- W2024687090 sameAs 2024687090 @default.
- W2024687090 citedByCount "83" @default.
- W2024687090 countsByYear W20246870902013 @default.
- W2024687090 countsByYear W20246870902014 @default.
- W2024687090 countsByYear W20246870902015 @default.
- W2024687090 countsByYear W20246870902016 @default.
- W2024687090 countsByYear W20246870902017 @default.
- W2024687090 countsByYear W20246870902018 @default.
- W2024687090 countsByYear W20246870902019 @default.
- W2024687090 countsByYear W20246870902020 @default.
- W2024687090 countsByYear W20246870902021 @default.
- W2024687090 countsByYear W20246870902022 @default.
- W2024687090 countsByYear W20246870902023 @default.
- W2024687090 crossrefType "journal-article" @default.
- W2024687090 hasAuthorship W2024687090A5029860349 @default.
- W2024687090 hasAuthorship W2024687090A5037942269 @default.
- W2024687090 hasAuthorship W2024687090A5041119793 @default.
- W2024687090 hasAuthorship W2024687090A5071037763 @default.
- W2024687090 hasAuthorship W2024687090A5089722002 @default.
- W2024687090 hasConcept C11413529 @default.
- W2024687090 hasConcept C121332964 @default.
- W2024687090 hasConcept C12426560 @default.
- W2024687090 hasConcept C134306372 @default.
- W2024687090 hasConcept C152671427 @default.
- W2024687090 hasConcept C153180895 @default.
- W2024687090 hasConcept C154945302 @default.
- W2024687090 hasConcept C157553263 @default.
- W2024687090 hasConcept C158693339 @default.
- W2024687090 hasConcept C163716315 @default.
- W2024687090 hasConcept C17744445 @default.
- W2024687090 hasConcept C187834632 @default.
- W2024687090 hasConcept C199539241 @default.
- W2024687090 hasConcept C2524010 @default.
- W2024687090 hasConcept C2776036281 @default.
- W2024687090 hasConcept C2776359362 @default.
- W2024687090 hasConcept C33923547 @default.
- W2024687090 hasConcept C41008148 @default.
- W2024687090 hasConcept C42355184 @default.
- W2024687090 hasConcept C52622490 @default.
- W2024687090 hasConcept C56372850 @default.
- W2024687090 hasConcept C5917680 @default.
- W2024687090 hasConcept C62520636 @default.
- W2024687090 hasConcept C73555534 @default.
- W2024687090 hasConcept C94625758 @default.
- W2024687090 hasConceptScore W2024687090C11413529 @default.
- W2024687090 hasConceptScore W2024687090C121332964 @default.
- W2024687090 hasConceptScore W2024687090C12426560 @default.
- W2024687090 hasConceptScore W2024687090C134306372 @default.
- W2024687090 hasConceptScore W2024687090C152671427 @default.
- W2024687090 hasConceptScore W2024687090C153180895 @default.
- W2024687090 hasConceptScore W2024687090C154945302 @default.
- W2024687090 hasConceptScore W2024687090C157553263 @default.
- W2024687090 hasConceptScore W2024687090C158693339 @default.
- W2024687090 hasConceptScore W2024687090C163716315 @default.