Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024697164> ?p ?o ?g. }
- W2024697164 endingPage "2310" @default.
- W2024697164 startingPage "2296" @default.
- W2024697164 abstract "To develop a neural-network based autocontouring algorithm for intrafractional lung-tumor tracking using Linac-MR and evaluate its performance with phantom and in-vivo MR images.An autocontouring algorithm was developed to determine both the shape and position of a lung tumor from each intrafractional MR image. A pulse-coupled neural network was implemented in the algorithm for contrast improvement of the tumor region. Prior to treatment, to initiate the algorithm, an expert user needs to contour the tumor and its maximum anticipated range of motion in pretreatment MR images. During treatment, however, the algorithm processes each intrafractional MR image and automatically generates a tumor contour without further user input. The algorithm is designed to produce a tumor contour that is the most similar to the expert's manual one. To evaluate the autocontouring algorithm in the author's Linac-MR environment which utilizes a 0.5 T MRI, a motion phantom and four lung cancer patients were imaged with 3 T MRI during normal breathing, and the image noise was degraded to reflect the image noise at 0.5 T. Each of the pseudo-0.5 T images was autocontoured using the author's algorithm. In each test image, the Dice similarity index (DSI) and Hausdorff distance (HD) between the expert's manual contour and the algorithm generated contour were calculated, and their centroid positions were compared (Δd centroid).The algorithm successfully contoured the shape of a moving tumor from dynamic MR images acquired every 275 ms. From the phantom study, mean DSI of 0.95-0.96, mean HD of 2.61-2.82 mm, and mean Δd centroid of 0.68-0.93 mm were achieved. From the in-vivo study, the author's algorithm achieved mean DSI of 0.87-0.92, mean HD of 3.12-4.35 mm, as well as Δd centroid of 1.03-1.35 mm. Autocontouring speed was less than 20 ms for each image.The authors have developed and evaluated a lung tumor autocontouring algorithm for intrafractional tumor tracking using Linac-MR. The autocontouring performance in the Linac-MR environment was evaluated using phantom and in-vivo MR images. From the in-vivo study, the author's algorithm achieved 87%-92% of contouring agreement and centroid tracking accuracy of 1.03-1.35 mm. These results demonstrate the feasibility of lung tumor autocontouring in the author's laboratory's Linac-MR environment." @default.
- W2024697164 created "2016-06-24" @default.
- W2024697164 creator A5047333970 @default.
- W2024697164 creator A5049802679 @default.
- W2024697164 creator A5051305867 @default.
- W2024697164 creator A5056202745 @default.
- W2024697164 creator A5078790371 @default.
- W2024697164 creator A5081353402 @default.
- W2024697164 date "2015-05-01" @default.
- W2024697164 modified "2023-09-25" @default.
- W2024697164 title "Neural-network based autocontouring algorithm for intrafractional lung-tumor tracking using Linac-MR" @default.
- W2024697164 cites W1964449190 @default.
- W2024697164 cites W1965892061 @default.
- W2024697164 cites W1966123133 @default.
- W2024697164 cites W1967190230 @default.
- W2024697164 cites W1973124169 @default.
- W2024697164 cites W1973755973 @default.
- W2024697164 cites W1979012022 @default.
- W2024697164 cites W1998300122 @default.
- W2024697164 cites W2004110874 @default.
- W2024697164 cites W2005862478 @default.
- W2024697164 cites W2009272822 @default.
- W2024697164 cites W2016272999 @default.
- W2024697164 cites W2016318799 @default.
- W2024697164 cites W2020792723 @default.
- W2024697164 cites W2027032089 @default.
- W2024697164 cites W2035519549 @default.
- W2024697164 cites W2037730376 @default.
- W2024697164 cites W2042681273 @default.
- W2024697164 cites W2045208074 @default.
- W2024697164 cites W2052426758 @default.
- W2024697164 cites W2066401872 @default.
- W2024697164 cites W2077516126 @default.
- W2024697164 cites W2085096920 @default.
- W2024697164 cites W2088396407 @default.
- W2024697164 cites W2127480863 @default.
- W2024697164 cites W2131611242 @default.
- W2024697164 cites W2133059825 @default.
- W2024697164 cites W2136573752 @default.
- W2024697164 cites W2142853128 @default.
- W2024697164 cites W2149959126 @default.
- W2024697164 cites W2150729352 @default.
- W2024697164 cites W2160754664 @default.
- W2024697164 cites W2163481554 @default.
- W2024697164 cites W4241725119 @default.
- W2024697164 cites W4302616093 @default.
- W2024697164 doi "https://doi.org/10.1118/1.4916657" @default.
- W2024697164 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25979024" @default.
- W2024697164 hasPublicationYear "2015" @default.
- W2024697164 type Work @default.
- W2024697164 sameAs 2024697164 @default.
- W2024697164 citedByCount "36" @default.
- W2024697164 countsByYear W20246971642015 @default.
- W2024697164 countsByYear W20246971642016 @default.
- W2024697164 countsByYear W20246971642017 @default.
- W2024697164 countsByYear W20246971642018 @default.
- W2024697164 countsByYear W20246971642019 @default.
- W2024697164 countsByYear W20246971642020 @default.
- W2024697164 countsByYear W20246971642021 @default.
- W2024697164 countsByYear W20246971642022 @default.
- W2024697164 countsByYear W20246971642023 @default.
- W2024697164 crossrefType "journal-article" @default.
- W2024697164 hasAuthorship W2024697164A5047333970 @default.
- W2024697164 hasAuthorship W2024697164A5049802679 @default.
- W2024697164 hasAuthorship W2024697164A5051305867 @default.
- W2024697164 hasAuthorship W2024697164A5056202745 @default.
- W2024697164 hasAuthorship W2024697164A5078790371 @default.
- W2024697164 hasAuthorship W2024697164A5081353402 @default.
- W2024697164 hasConcept C104293457 @default.
- W2024697164 hasConcept C11413529 @default.
- W2024697164 hasConcept C126322002 @default.
- W2024697164 hasConcept C146599234 @default.
- W2024697164 hasConcept C154945302 @default.
- W2024697164 hasConcept C2776256026 @default.
- W2024697164 hasConcept C2989005 @default.
- W2024697164 hasConcept C3018373657 @default.
- W2024697164 hasConcept C31972630 @default.
- W2024697164 hasConcept C41008148 @default.
- W2024697164 hasConcept C50644808 @default.
- W2024697164 hasConcept C71924100 @default.
- W2024697164 hasConceptScore W2024697164C104293457 @default.
- W2024697164 hasConceptScore W2024697164C11413529 @default.
- W2024697164 hasConceptScore W2024697164C126322002 @default.
- W2024697164 hasConceptScore W2024697164C146599234 @default.
- W2024697164 hasConceptScore W2024697164C154945302 @default.
- W2024697164 hasConceptScore W2024697164C2776256026 @default.
- W2024697164 hasConceptScore W2024697164C2989005 @default.
- W2024697164 hasConceptScore W2024697164C3018373657 @default.
- W2024697164 hasConceptScore W2024697164C31972630 @default.
- W2024697164 hasConceptScore W2024697164C41008148 @default.
- W2024697164 hasConceptScore W2024697164C50644808 @default.
- W2024697164 hasConceptScore W2024697164C71924100 @default.
- W2024697164 hasIssue "5" @default.
- W2024697164 hasLocation W20246971641 @default.
- W2024697164 hasLocation W20246971642 @default.
- W2024697164 hasOpenAccess W2024697164 @default.
- W2024697164 hasPrimaryLocation W20246971641 @default.
- W2024697164 hasRelatedWork W1562288862 @default.