Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024707841> ?p ?o ?g. }
- W2024707841 endingPage "10786" @default.
- W2024707841 startingPage "10774" @default.
- W2024707841 abstract "A general formalism for time-dependent linear response theory is presented within the framework of linear-combination-of-atomic-orbital crystalline orbital theory for the electronic excited states of infinite one-dimensional lattices (polymers). The formalism encompasses those of time-dependent Hartree–Fock theory (TDHF), time-dependent density functional theory (TDDFT), and configuration interaction singles theory (CIS) (as the Tamm–Dancoff approximation to TDHF) as particular cases. These single-excitation theories are implemented by using a trial-vector algorithm, such that the atomic-orbital-based two-electron integrals are recomputed as needed and the transformation of these integrals from the atomic-orbital basis to the crystalline-orbital basis is avoided. Convergence of the calculated excitation energies with respect to the number of unit cells taken into account in the lattice summations (N) and the number of wave vector sampling points (K) is studied taking the lowest singlet and triplet exciton states of all-trans polyethylene as an example. The CIS and TDHF excitation energies of polyethylene show rapid convergence with respect to K and they are substantially smaller than the corresponding Hartree–Fock fundamental band gaps. In contrast, the excitation energies obtained from TDDFT and its modification, the Tamm–Dancoff approximation to TDDFT, show slower convergence with respect to K and the excitation energies to the lowest singlet exciton states tend to collapse to the corresponding Kohn–Sham fundamental band gaps in the limit of K→∞. We consider this to be a consequence of the incomplete cancellation of the self-interaction energy in the matrix elements of the TDDFT matrix eigenvalue equation, and to be a problem inherent to the current approximate exchange–correlation potentials that decay too rapidly in the asymptotic region." @default.
- W2024707841 created "2016-06-24" @default.
- W2024707841 creator A5015311244 @default.
- W2024707841 creator A5041373282 @default.
- W2024707841 creator A5088187289 @default.
- W2024707841 date "1999-12-22" @default.
- W2024707841 modified "2023-10-16" @default.
- W2024707841 title "Configuration interaction singles, time-dependent Hartree–Fock, and time-dependent density functional theory for the electronic excited states of extended systems" @default.
- W2024707841 cites W1591442392 @default.
- W2024707841 cites W1970512969 @default.
- W2024707841 cites W1974856846 @default.
- W2024707841 cites W1976373708 @default.
- W2024707841 cites W1981872991 @default.
- W2024707841 cites W1982840214 @default.
- W2024707841 cites W1983348565 @default.
- W2024707841 cites W1985365227 @default.
- W2024707841 cites W1985701409 @default.
- W2024707841 cites W1987017813 @default.
- W2024707841 cites W1989021984 @default.
- W2024707841 cites W1990661587 @default.
- W2024707841 cites W1995070318 @default.
- W2024707841 cites W1996810736 @default.
- W2024707841 cites W1999633702 @default.
- W2024707841 cites W2000067745 @default.
- W2024707841 cites W2001525843 @default.
- W2024707841 cites W2004213846 @default.
- W2024707841 cites W2006806329 @default.
- W2024707841 cites W2006947798 @default.
- W2024707841 cites W2007580576 @default.
- W2024707841 cites W2009596258 @default.
- W2024707841 cites W2011229065 @default.
- W2024707841 cites W2012176888 @default.
- W2024707841 cites W2014861758 @default.
- W2024707841 cites W2016227791 @default.
- W2024707841 cites W2017328675 @default.
- W2024707841 cites W2023271753 @default.
- W2024707841 cites W2026985296 @default.
- W2024707841 cites W2028298569 @default.
- W2024707841 cites W2035027198 @default.
- W2024707841 cites W2036090969 @default.
- W2024707841 cites W2038533471 @default.
- W2024707841 cites W2044660317 @default.
- W2024707841 cites W2046415238 @default.
- W2024707841 cites W2046668457 @default.
- W2024707841 cites W2047386449 @default.
- W2024707841 cites W2047428066 @default.
- W2024707841 cites W2055831666 @default.
- W2024707841 cites W2056773155 @default.
- W2024707841 cites W2058398316 @default.
- W2024707841 cites W2059700291 @default.
- W2024707841 cites W2063663126 @default.
- W2024707841 cites W2063676232 @default.
- W2024707841 cites W2064064393 @default.
- W2024707841 cites W2065474236 @default.
- W2024707841 cites W2066796064 @default.
- W2024707841 cites W2067348840 @default.
- W2024707841 cites W2068228867 @default.
- W2024707841 cites W2069197437 @default.
- W2024707841 cites W2070235865 @default.
- W2024707841 cites W2075981399 @default.
- W2024707841 cites W2078746605 @default.
- W2024707841 cites W2083504401 @default.
- W2024707841 cites W2086458318 @default.
- W2024707841 cites W2086957099 @default.
- W2024707841 cites W2089296356 @default.
- W2024707841 cites W2093160704 @default.
- W2024707841 cites W2102133971 @default.
- W2024707841 cites W2109665034 @default.
- W2024707841 cites W2125316120 @default.
- W2024707841 cites W2143981217 @default.
- W2024707841 cites W2187439399 @default.
- W2024707841 cites W2996975950 @default.
- W2024707841 cites W3144642009 @default.
- W2024707841 cites W4246410582 @default.
- W2024707841 doi "https://doi.org/10.1063/1.480443" @default.
- W2024707841 hasPublicationYear "1999" @default.
- W2024707841 type Work @default.
- W2024707841 sameAs 2024707841 @default.
- W2024707841 citedByCount "181" @default.
- W2024707841 countsByYear W20247078412012 @default.
- W2024707841 countsByYear W20247078412013 @default.
- W2024707841 countsByYear W20247078412014 @default.
- W2024707841 countsByYear W20247078412015 @default.
- W2024707841 countsByYear W20247078412016 @default.
- W2024707841 countsByYear W20247078412017 @default.
- W2024707841 countsByYear W20247078412018 @default.
- W2024707841 countsByYear W20247078412019 @default.
- W2024707841 countsByYear W20247078412020 @default.
- W2024707841 countsByYear W20247078412021 @default.
- W2024707841 countsByYear W20247078412022 @default.
- W2024707841 countsByYear W20247078412023 @default.
- W2024707841 crossrefType "journal-article" @default.
- W2024707841 hasAuthorship W2024707841A5015311244 @default.
- W2024707841 hasAuthorship W2024707841A5041373282 @default.
- W2024707841 hasAuthorship W2024707841A5088187289 @default.
- W2024707841 hasConcept C113630233 @default.
- W2024707841 hasConcept C121332964 @default.
- W2024707841 hasConcept C152365726 @default.