Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024759709> ?p ?o ?g. }
- W2024759709 endingPage "873" @default.
- W2024759709 startingPage "849" @default.
- W2024759709 abstract "A two-stage procedure for the determination of a united-residue potential designed for protein simulations is outlined. In the first stage, the long-range and local-interaction energy terms of the total energy of a polypeptide chain are determined by analyzing protein-crystal data and averaging the all-atom energy surfaces. In the second stage (described in the accompanying article), the relative weights of the energy terms are optimized so as to locate the native structures of selected test proteins as the lowest energy structures. The goal of the work in the present study is to parameterize physically reasonable functional forms of the potentials of mean force for side-chain interactions. The potentials are of both radial and anisotropic type. Radial potentials include the Lennard-Jones and the shifted Lennard-Jones potential (with the shift parameter independent of orientation). To treat the angular dependence of side-chain interactions, three functional forms of the potential that were designed previously to describe anisotropic systems are evaluated: Berne-Pechukas (dilated Lennard-Jones); Gay-Berne (shifted Lennard-Jones with orientation-dependent shift parameters); and Gay-Berne-Vorobjev (the same as the preceding one, but with one more set of variable parameters). These functional forms were used to parameterize, within a short-distance range, the potentials of mean force for side-chain pair interactions that are related by the Boltzmann principle to the pair correlation functions determined from protein-crystal data. Parameter determination was formulated as a generalized nonlinear least-squares problem with the target function being the weighted sum of squares of the differences between calculated and “experimental” (i.e., estimated from protein-crystal data) angular, radial-angular, and radial pair correlation functions, as well as contact free energies. A set of 195 high-resolution nonhomologous structures from the Protein Data Bank was used to calculate the “experimental” values. The contact free energies were scaled by the slope of the correlation line between side-chain hydrophobicities, calculated from the contact free energies, and those determined by Fauchere and Pliška from the partition coefficients of amino acids between water and n-octanol. The methylene group served to define the reference contact free energy corresponding to that between the glycine methylene groups of backbone residues. Statistical analysis of the goodness of fit revealed that the Gay-Berne-Vorobjev anisotropic potential fits best to the experimental radial and angular correlation functions and contact free energies and therefore represents the free-energy surface of side-chain-side-chain interactions most accurately. Thus, its choice for simulations of protein structure is probably the most appropriate. However, the use of simpler functional forms is recommended, if the speed of computations is an issue. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18: 849–873, 1997" @default.
- W2024759709 created "2016-06-24" @default.
- W2024759709 creator A5016932360 @default.
- W2024759709 creator A5022665888 @default.
- W2024759709 creator A5062012411 @default.
- W2024759709 creator A5062169159 @default.
- W2024759709 creator A5072981969 @default.
- W2024759709 creator A5073908411 @default.
- W2024759709 date "1997-05-01" @default.
- W2024759709 modified "2023-10-18" @default.
- W2024759709 title "A united-residue force field for off-lattice protein-structure simulations. I. Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data" @default.
- W2024759709 cites W1582257194 @default.
- W2024759709 cites W1588000118 @default.
- W2024759709 cites W1589812083 @default.
- W2024759709 cites W1965838279 @default.
- W2024759709 cites W1971087460 @default.
- W2024759709 cites W1971242613 @default.
- W2024759709 cites W1975017420 @default.
- W2024759709 cites W1981069567 @default.
- W2024759709 cites W1981134380 @default.
- W2024759709 cites W1982842661 @default.
- W2024759709 cites W1989661140 @default.
- W2024759709 cites W1996466860 @default.
- W2024759709 cites W1998072661 @default.
- W2024759709 cites W1999347494 @default.
- W2024759709 cites W2001130582 @default.
- W2024759709 cites W2001956250 @default.
- W2024759709 cites W2002084274 @default.
- W2024759709 cites W2003147309 @default.
- W2024759709 cites W2012642477 @default.
- W2024759709 cites W2012834186 @default.
- W2024759709 cites W2013317256 @default.
- W2024759709 cites W2013785414 @default.
- W2024759709 cites W2014637311 @default.
- W2024759709 cites W2015292449 @default.
- W2024759709 cites W2016610222 @default.
- W2024759709 cites W2017877477 @default.
- W2024759709 cites W2029195137 @default.
- W2024759709 cites W2030924507 @default.
- W2024759709 cites W2031730136 @default.
- W2024759709 cites W2038863293 @default.
- W2024759709 cites W2039299698 @default.
- W2024759709 cites W2041713164 @default.
- W2024759709 cites W2042190140 @default.
- W2024759709 cites W2060778016 @default.
- W2024759709 cites W2070783701 @default.
- W2024759709 cites W2071608842 @default.
- W2024759709 cites W2072325285 @default.
- W2024759709 cites W2072734360 @default.
- W2024759709 cites W2072843928 @default.
- W2024759709 cites W2076488922 @default.
- W2024759709 cites W2079589162 @default.
- W2024759709 cites W2083004285 @default.
- W2024759709 cites W2087070363 @default.
- W2024759709 cites W2089563755 @default.
- W2024759709 cites W2089591371 @default.
- W2024759709 cites W2091582055 @default.
- W2024759709 cites W2091778154 @default.
- W2024759709 cites W2101212419 @default.
- W2024759709 cites W2101366028 @default.
- W2024759709 cites W2103047198 @default.
- W2024759709 cites W2114441129 @default.
- W2024759709 cites W2115246575 @default.
- W2024759709 cites W2129109497 @default.
- W2024759709 cites W2129558790 @default.
- W2024759709 cites W2134812230 @default.
- W2024759709 cites W2138132608 @default.
- W2024759709 cites W2151414656 @default.
- W2024759709 cites W2151670672 @default.
- W2024759709 cites W2151819067 @default.
- W2024759709 cites W2155858308 @default.
- W2024759709 cites W2159957344 @default.
- W2024759709 cites W2171265758 @default.
- W2024759709 cites W2314546853 @default.
- W2024759709 cites W2489605225 @default.
- W2024759709 cites W4255724181 @default.
- W2024759709 cites W4299798163 @default.
- W2024759709 doi "https://doi.org/10.1002/(sici)1096-987x(199705)18:7<849::aid-jcc1>3.0.co;2-r" @default.
- W2024759709 hasPublicationYear "1997" @default.
- W2024759709 type Work @default.
- W2024759709 sameAs 2024759709 @default.
- W2024759709 citedByCount "310" @default.
- W2024759709 countsByYear W20247597092012 @default.
- W2024759709 countsByYear W20247597092013 @default.
- W2024759709 countsByYear W20247597092014 @default.
- W2024759709 countsByYear W20247597092015 @default.
- W2024759709 countsByYear W20247597092016 @default.
- W2024759709 countsByYear W20247597092017 @default.
- W2024759709 countsByYear W20247597092018 @default.
- W2024759709 countsByYear W20247597092019 @default.
- W2024759709 countsByYear W20247597092020 @default.
- W2024759709 countsByYear W20247597092021 @default.
- W2024759709 countsByYear W20247597092022 @default.
- W2024759709 countsByYear W20247597092023 @default.
- W2024759709 crossrefType "journal-article" @default.
- W2024759709 hasAuthorship W2024759709A5016932360 @default.
- W2024759709 hasAuthorship W2024759709A5022665888 @default.
- W2024759709 hasAuthorship W2024759709A5062012411 @default.