Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024782313> ?p ?o ?g. }
- W2024782313 endingPage "1397" @default.
- W2024782313 startingPage "1386" @default.
- W2024782313 abstract "Thickness measurements of the cerebral cortex can aid diagnosis and provide valuable information about the temporal evolution of diseases such as Alzheimer's, Huntington's, and schizophrenia. Methods that measure the thickness of the cerebral cortex from in-vivo magnetic resonance (MR) images rely on an accurate segmentation of the MR data. However, segmenting the cortex in a robust and accurate way still poses a challenge due to the presence of noise, intensity non-uniformity, partial volume effects, the limited resolution of MRI and the highly convoluted shape of the cortical folds. Beginning with a well-established probabilistic segmentation model with anatomical tissue priors, we propose three post-processing refinements: a novel modification of the prior information to reduce segmentation bias; introduction of explicit partial volume classes; and a locally varying MRF-based model for enhancement of sulci and gyri. Experiments performed on a new digital phantom, on BrainWeb data and on data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) show statistically significant improvements in Dice scores and PV estimation (p < 10− 3) and also increased thickness estimation accuracy when compared to three well established techniques." @default.
- W2024782313 created "2016-06-24" @default.
- W2024782313 creator A5001311980 @default.
- W2024782313 creator A5018652821 @default.
- W2024782313 creator A5018836358 @default.
- W2024782313 creator A5075101757 @default.
- W2024782313 creator A5077080413 @default.
- W2024782313 creator A5082106258 @default.
- W2024782313 date "2011-06-01" @default.
- W2024782313 modified "2023-09-23" @default.
- W2024782313 title "LoAd: A locally adaptive cortical segmentation algorithm" @default.
- W2024782313 cites W1485601572 @default.
- W2024782313 cites W1976473223 @default.
- W2024782313 cites W1979719462 @default.
- W2024782313 cites W1986075844 @default.
- W2024782313 cites W1991258631 @default.
- W2024782313 cites W1991768781 @default.
- W2024782313 cites W1996051397 @default.
- W2024782313 cites W2002134117 @default.
- W2024782313 cites W2004293194 @default.
- W2024782313 cites W2029262131 @default.
- W2024782313 cites W2031491792 @default.
- W2024782313 cites W2035079822 @default.
- W2024782313 cites W2044776246 @default.
- W2024782313 cites W2058046532 @default.
- W2024782313 cites W2064019305 @default.
- W2024782313 cites W2064327730 @default.
- W2024782313 cites W2082939309 @default.
- W2024782313 cites W2086456561 @default.
- W2024782313 cites W2092229152 @default.
- W2024782313 cites W2098982273 @default.
- W2024782313 cites W2101608218 @default.
- W2024782313 cites W2107956652 @default.
- W2024782313 cites W2109717317 @default.
- W2024782313 cites W2110208125 @default.
- W2024782313 cites W2111677918 @default.
- W2024782313 cites W2114321577 @default.
- W2024782313 cites W2117020833 @default.
- W2024782313 cites W2130686832 @default.
- W2024782313 cites W2131339155 @default.
- W2024782313 cites W2132513126 @default.
- W2024782313 cites W2134495751 @default.
- W2024782313 cites W2136468386 @default.
- W2024782313 cites W2136573752 @default.
- W2024782313 cites W2136882268 @default.
- W2024782313 cites W2139656398 @default.
- W2024782313 cites W2143017382 @default.
- W2024782313 cites W2147621924 @default.
- W2024782313 cites W2158063156 @default.
- W2024782313 cites W2160027020 @default.
- W2024782313 cites W2161557710 @default.
- W2024782313 cites W2161591846 @default.
- W2024782313 cites W2162630772 @default.
- W2024782313 cites W2166916666 @default.
- W2024782313 cites W2171380313 @default.
- W2024782313 cites W4230920194 @default.
- W2024782313 doi "https://doi.org/10.1016/j.neuroimage.2011.02.013" @default.
- W2024782313 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3554791" @default.
- W2024782313 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21316470" @default.
- W2024782313 hasPublicationYear "2011" @default.
- W2024782313 type Work @default.
- W2024782313 sameAs 2024782313 @default.
- W2024782313 citedByCount "81" @default.
- W2024782313 countsByYear W20247823132012 @default.
- W2024782313 countsByYear W20247823132013 @default.
- W2024782313 countsByYear W20247823132014 @default.
- W2024782313 countsByYear W20247823132015 @default.
- W2024782313 countsByYear W20247823132016 @default.
- W2024782313 countsByYear W20247823132017 @default.
- W2024782313 countsByYear W20247823132018 @default.
- W2024782313 countsByYear W20247823132019 @default.
- W2024782313 countsByYear W20247823132021 @default.
- W2024782313 countsByYear W20247823132022 @default.
- W2024782313 crossrefType "journal-article" @default.
- W2024782313 hasAuthorship W2024782313A5001311980 @default.
- W2024782313 hasAuthorship W2024782313A5018652821 @default.
- W2024782313 hasAuthorship W2024782313A5018836358 @default.
- W2024782313 hasAuthorship W2024782313A5075101757 @default.
- W2024782313 hasAuthorship W2024782313A5077080413 @default.
- W2024782313 hasAuthorship W2024782313A5082106258 @default.
- W2024782313 hasBestOaLocation W20247823132 @default.
- W2024782313 hasConcept C124504099 @default.
- W2024782313 hasConcept C126838900 @default.
- W2024782313 hasConcept C143409427 @default.
- W2024782313 hasConcept C153180895 @default.
- W2024782313 hasConcept C154945302 @default.
- W2024782313 hasConcept C15744967 @default.
- W2024782313 hasConcept C169760540 @default.
- W2024782313 hasConcept C31972630 @default.
- W2024782313 hasConcept C41008148 @default.
- W2024782313 hasConcept C49937458 @default.
- W2024782313 hasConcept C58693492 @default.
- W2024782313 hasConcept C71924100 @default.
- W2024782313 hasConcept C82233179 @default.
- W2024782313 hasConcept C89600930 @default.
- W2024782313 hasConceptScore W2024782313C124504099 @default.
- W2024782313 hasConceptScore W2024782313C126838900 @default.
- W2024782313 hasConceptScore W2024782313C143409427 @default.