Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024785934> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2024785934 endingPage "6" @default.
- W2024785934 startingPage "6" @default.
- W2024785934 abstract "Plotless density estimators are those that are based on distance measures rather than counts per unit area (quadrats or plots) to estimate the density of some usually stationary event, e.g. burrow openings, damage to plant stems, etc. These estimators typically use distance measures between events and from random points to events to derive an estimate of density. The error and bias of these estimators for the various spatial patterns found in nature have been examined using simulated populations only. In this study we investigated eight plotless density estimators to determine which were robust across a wide range of data sets from fully mapped field sites. They covered a wide range of situations including animal damage to rice and corn, nest locations, active rodent burrows and distribution of plants. Monte Carlo simulations were applied to sample the data sets, and in all cases the error of the estimate (measured as relative root mean square error) was reduced with increasing sample size. The method of calculation and ease of use in the field were also used to judge the usefulness of the estimator. Estimators were evaluated in their original published forms, although the variable area transect (VAT) and ordered distance methods have been the subjects of optimization studies. An estimator that was a compound of three basic distance estimators was found to be robust across all spatial patterns for sample sizes of 25 or greater. The same field methodology can be used either with the basic distance formula or the formula used with the Kendall-Moran estimator in which case a reduction in error may be gained for sample sizes less than 25, however, there is no improvement for larger sample sizes. The variable area transect (VAT) method performed moderately well, is easy to use in the field, and its calculations easy to undertake. Plotless density estimators can provide an estimate of density in situations where it would not be practical to layout a plot or quadrat and can in many cases reduce the workload in the field." @default.
- W2024785934 created "2016-06-24" @default.
- W2024785934 creator A5015081748 @default.
- W2024785934 creator A5035819832 @default.
- W2024785934 creator A5051518245 @default.
- W2024785934 creator A5065986667 @default.
- W2024785934 date "2008-01-01" @default.
- W2024785934 modified "2023-09-23" @default.
- W2024785934 title "A comparison of plotless density estimators using Monte Carlo simulation on totally enumerated field data sets" @default.
- W2024785934 cites W1977994809 @default.
- W2024785934 cites W1999750345 @default.
- W2024785934 cites W1999811567 @default.
- W2024785934 cites W2047810995 @default.
- W2024785934 cites W2049763161 @default.
- W2024785934 cites W2051277798 @default.
- W2024785934 cites W2073096671 @default.
- W2024785934 cites W2083942941 @default.
- W2024785934 cites W2116923739 @default.
- W2024785934 cites W2169002110 @default.
- W2024785934 cites W2171221317 @default.
- W2024785934 cites W2326434265 @default.
- W2024785934 cites W2327857116 @default.
- W2024785934 cites W2414895359 @default.
- W2024785934 doi "https://doi.org/10.1186/1472-6785-8-6" @default.
- W2024785934 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2422836" @default.
- W2024785934 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18416853" @default.
- W2024785934 hasPublicationYear "2008" @default.
- W2024785934 type Work @default.
- W2024785934 sameAs 2024785934 @default.
- W2024785934 citedByCount "31" @default.
- W2024785934 countsByYear W20247859342012 @default.
- W2024785934 countsByYear W20247859342013 @default.
- W2024785934 countsByYear W20247859342014 @default.
- W2024785934 countsByYear W20247859342015 @default.
- W2024785934 countsByYear W20247859342016 @default.
- W2024785934 countsByYear W20247859342017 @default.
- W2024785934 countsByYear W20247859342018 @default.
- W2024785934 countsByYear W20247859342019 @default.
- W2024785934 countsByYear W20247859342020 @default.
- W2024785934 countsByYear W20247859342023 @default.
- W2024785934 crossrefType "journal-article" @default.
- W2024785934 hasAuthorship W2024785934A5015081748 @default.
- W2024785934 hasAuthorship W2024785934A5035819832 @default.
- W2024785934 hasAuthorship W2024785934A5051518245 @default.
- W2024785934 hasAuthorship W2024785934A5065986667 @default.
- W2024785934 hasBestOaLocation W20247859341 @default.
- W2024785934 hasConcept C105795698 @default.
- W2024785934 hasConcept C107394435 @default.
- W2024785934 hasConcept C129848803 @default.
- W2024785934 hasConcept C139945424 @default.
- W2024785934 hasConcept C159985019 @default.
- W2024785934 hasConcept C185429906 @default.
- W2024785934 hasConcept C18903297 @default.
- W2024785934 hasConcept C192562407 @default.
- W2024785934 hasConcept C19499675 @default.
- W2024785934 hasConcept C204323151 @default.
- W2024785934 hasConcept C33923547 @default.
- W2024785934 hasConcept C69661492 @default.
- W2024785934 hasConcept C86803240 @default.
- W2024785934 hasConceptScore W2024785934C105795698 @default.
- W2024785934 hasConceptScore W2024785934C107394435 @default.
- W2024785934 hasConceptScore W2024785934C129848803 @default.
- W2024785934 hasConceptScore W2024785934C139945424 @default.
- W2024785934 hasConceptScore W2024785934C159985019 @default.
- W2024785934 hasConceptScore W2024785934C185429906 @default.
- W2024785934 hasConceptScore W2024785934C18903297 @default.
- W2024785934 hasConceptScore W2024785934C192562407 @default.
- W2024785934 hasConceptScore W2024785934C19499675 @default.
- W2024785934 hasConceptScore W2024785934C204323151 @default.
- W2024785934 hasConceptScore W2024785934C33923547 @default.
- W2024785934 hasConceptScore W2024785934C69661492 @default.
- W2024785934 hasConceptScore W2024785934C86803240 @default.
- W2024785934 hasIssue "1" @default.
- W2024785934 hasLocation W20247859341 @default.
- W2024785934 hasLocation W20247859342 @default.
- W2024785934 hasLocation W20247859343 @default.
- W2024785934 hasLocation W20247859344 @default.
- W2024785934 hasLocation W20247859345 @default.
- W2024785934 hasOpenAccess W2024785934 @default.
- W2024785934 hasPrimaryLocation W20247859341 @default.
- W2024785934 hasRelatedWork W106751956 @default.
- W2024785934 hasRelatedWork W2051592560 @default.
- W2024785934 hasRelatedWork W2054005319 @default.
- W2024785934 hasRelatedWork W2057722517 @default.
- W2024785934 hasRelatedWork W2082092036 @default.
- W2024785934 hasRelatedWork W2171221317 @default.
- W2024785934 hasRelatedWork W2521753262 @default.
- W2024785934 hasRelatedWork W2576777794 @default.
- W2024785934 hasRelatedWork W2907746047 @default.
- W2024785934 hasRelatedWork W2918677219 @default.
- W2024785934 hasVolume "8" @default.
- W2024785934 isParatext "false" @default.
- W2024785934 isRetracted "false" @default.
- W2024785934 magId "2024785934" @default.
- W2024785934 workType "article" @default.