Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024794876> ?p ?o ?g. }
- W2024794876 endingPage "9" @default.
- W2024794876 startingPage "1" @default.
- W2024794876 abstract "We demonstrate an efficient data-parallel algorithm for building large hash tables of millions of elements in real-time. We consider two parallel algorithms for the construction: a classical sparse perfect hashing approach, and cuckoo hashing, which packs elements densely by allowing an element to be stored in one of multiple possible locations. Our construction is a hybrid approach that uses both algorithms. We measure the construction time, access time, and memory usage of our implementations and demonstrate real-time performance on large datasets: for 5 million key-value pairs, we construct a hash table in 35.7 ms using 1.42 times as much memory as the input data itself, and we can access all the elements in that hash table in 15.3 ms. For comparison, sorting the same data requires 36.6 ms, but accessing all the elements via binary search requires 79.5 ms. Furthermore, we show how our hashing methods can be applied to two graphics applications: 3D surface intersection for moving data and geometric hashing for image matching." @default.
- W2024794876 created "2016-06-24" @default.
- W2024794876 creator A5023721939 @default.
- W2024794876 creator A5028662746 @default.
- W2024794876 creator A5031972964 @default.
- W2024794876 creator A5053588403 @default.
- W2024794876 creator A5062318856 @default.
- W2024794876 creator A5074974298 @default.
- W2024794876 creator A5084041284 @default.
- W2024794876 date "2009-12-01" @default.
- W2024794876 modified "2023-10-03" @default.
- W2024794876 title "Real-time parallel hashing on the GPU" @default.
- W2024794876 cites W1965907701 @default.
- W2024794876 cites W1977946246 @default.
- W2024794876 cites W1980789236 @default.
- W2024794876 cites W1989069336 @default.
- W2024794876 cites W2000581391 @default.
- W2024794876 cites W2009422376 @default.
- W2024794876 cites W2010209818 @default.
- W2024794876 cites W2031306403 @default.
- W2024794876 cites W2035982968 @default.
- W2024794876 cites W2044599026 @default.
- W2024794876 cites W2048541619 @default.
- W2024794876 cites W2060690113 @default.
- W2024794876 cites W2061468734 @default.
- W2024794876 cites W2086559686 @default.
- W2024794876 cites W2096163668 @default.
- W2024794876 cites W2118558147 @default.
- W2024794876 cites W2133888192 @default.
- W2024794876 cites W2135525032 @default.
- W2024794876 cites W2136399778 @default.
- W2024794876 cites W2153226019 @default.
- W2024794876 cites W2154805110 @default.
- W2024794876 cites W2159709546 @default.
- W2024794876 cites W2160533343 @default.
- W2024794876 cites W2165621523 @default.
- W2024794876 cites W2168859801 @default.
- W2024794876 cites W2912437396 @default.
- W2024794876 cites W3000271922 @default.
- W2024794876 cites W4255148642 @default.
- W2024794876 doi "https://doi.org/10.1145/1618452.1618500" @default.
- W2024794876 hasPublicationYear "2009" @default.
- W2024794876 type Work @default.
- W2024794876 sameAs 2024794876 @default.
- W2024794876 citedByCount "145" @default.
- W2024794876 countsByYear W20247948762012 @default.
- W2024794876 countsByYear W20247948762013 @default.
- W2024794876 countsByYear W20247948762014 @default.
- W2024794876 countsByYear W20247948762015 @default.
- W2024794876 countsByYear W20247948762016 @default.
- W2024794876 countsByYear W20247948762017 @default.
- W2024794876 countsByYear W20247948762018 @default.
- W2024794876 countsByYear W20247948762019 @default.
- W2024794876 countsByYear W20247948762020 @default.
- W2024794876 countsByYear W20247948762021 @default.
- W2024794876 countsByYear W20247948762022 @default.
- W2024794876 countsByYear W20247948762023 @default.
- W2024794876 crossrefType "journal-article" @default.
- W2024794876 hasAuthorship W2024794876A5023721939 @default.
- W2024794876 hasAuthorship W2024794876A5028662746 @default.
- W2024794876 hasAuthorship W2024794876A5031972964 @default.
- W2024794876 hasAuthorship W2024794876A5053588403 @default.
- W2024794876 hasAuthorship W2024794876A5062318856 @default.
- W2024794876 hasAuthorship W2024794876A5074974298 @default.
- W2024794876 hasAuthorship W2024794876A5084041284 @default.
- W2024794876 hasBestOaLocation W20247948762 @default.
- W2024794876 hasConcept C11413529 @default.
- W2024794876 hasConcept C116058348 @default.
- W2024794876 hasConcept C122907437 @default.
- W2024794876 hasConcept C133667856 @default.
- W2024794876 hasConcept C138111711 @default.
- W2024794876 hasConcept C162319229 @default.
- W2024794876 hasConcept C173608175 @default.
- W2024794876 hasConcept C199360897 @default.
- W2024794876 hasConcept C36375716 @default.
- W2024794876 hasConcept C38652104 @default.
- W2024794876 hasConcept C41008148 @default.
- W2024794876 hasConcept C67388219 @default.
- W2024794876 hasConcept C80444323 @default.
- W2024794876 hasConcept C99138194 @default.
- W2024794876 hasConceptScore W2024794876C11413529 @default.
- W2024794876 hasConceptScore W2024794876C116058348 @default.
- W2024794876 hasConceptScore W2024794876C122907437 @default.
- W2024794876 hasConceptScore W2024794876C133667856 @default.
- W2024794876 hasConceptScore W2024794876C138111711 @default.
- W2024794876 hasConceptScore W2024794876C162319229 @default.
- W2024794876 hasConceptScore W2024794876C173608175 @default.
- W2024794876 hasConceptScore W2024794876C199360897 @default.
- W2024794876 hasConceptScore W2024794876C36375716 @default.
- W2024794876 hasConceptScore W2024794876C38652104 @default.
- W2024794876 hasConceptScore W2024794876C41008148 @default.
- W2024794876 hasConceptScore W2024794876C67388219 @default.
- W2024794876 hasConceptScore W2024794876C80444323 @default.
- W2024794876 hasConceptScore W2024794876C99138194 @default.
- W2024794876 hasFunder F4320306076 @default.
- W2024794876 hasIssue "5" @default.
- W2024794876 hasLocation W20247948761 @default.
- W2024794876 hasLocation W20247948762 @default.