Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024806284> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2024806284 endingPage "482" @default.
- W2024806284 startingPage "443" @default.
- W2024806284 abstract "The task of a theory of Schubert polynomials is to produce explicit representatives for Schubert classes in the cohomology ring of a flag variety, and to do so in a manner that is as natural as possible from a combinatorial point of view. To explain more fully, let us review a special case, the Schubert calculus for Grassmannians, where one asks for the number of linear spaces of given dimension satisfying certain geometric conditions. A typical problem is to find the number of lines meeting four given lines in general position in 3-space (answer below). For each of the four given lines, the set of lines meeting it is a Schubert variety in the Grassmannian and we want the number of intersection points of these four subvarieties. In the modem solution of this problem, the Schubert varieties induce canonical elements of the cohomology ring of the Grassmannian, called Schubert classes. The product of these Schubert classes is the class of a point times the number of intersection points, counted with appropriate multiplicities. This reformulation of the problem, though one of the great achievements of algebraic geometry, is only part of a solution. It remains to give a concrete model for the cohomology ring that makes explicit computation with Schubert classes possible. As it happens, the cohomology rings of Grassmannians can be identified with quotients of a polynomial ring so that Schubert classes correspond to Schur functions. Intersection numbers such as we are considering then turn out to be Littlewood-Richardson coefficients. For example, the answer to our four-lines 4 problem is the coefficient of the Schur function s(2 2) in the product s(1) X or 2. For an extended treatment and history of the subject, see [10], [11], [18]. The identification of Schur functions as Schubert polynomials for Grassmannians is a consequence of a more general and now highly developed theory of Schubert polynomials for the flag varieties of the special linear groups SL(n, C). The starting point for this more general theory is a construction of" @default.
- W2024806284 created "2016-06-24" @default.
- W2024806284 creator A5015409150 @default.
- W2024806284 creator A5090924793 @default.
- W2024806284 date "1995-01-01" @default.
- W2024806284 modified "2023-10-06" @default.
- W2024806284 title "Schubert polynomials for the classical groups" @default.
- W2024806284 cites W1489169640 @default.
- W2024806284 cites W1524155628 @default.
- W2024806284 cites W178893740 @default.
- W2024806284 cites W1970679756 @default.
- W2024806284 cites W1995154714 @default.
- W2024806284 cites W1999096883 @default.
- W2024806284 cites W2015981416 @default.
- W2024806284 cites W2080720229 @default.
- W2024806284 cites W4212906638 @default.
- W2024806284 cites W4243628866 @default.
- W2024806284 doi "https://doi.org/10.1090/s0894-0347-1995-1290232-1" @default.
- W2024806284 hasPublicationYear "1995" @default.
- W2024806284 type Work @default.
- W2024806284 sameAs 2024806284 @default.
- W2024806284 citedByCount "148" @default.
- W2024806284 countsByYear W20248062842012 @default.
- W2024806284 countsByYear W20248062842013 @default.
- W2024806284 countsByYear W20248062842014 @default.
- W2024806284 countsByYear W20248062842015 @default.
- W2024806284 countsByYear W20248062842016 @default.
- W2024806284 countsByYear W20248062842017 @default.
- W2024806284 countsByYear W20248062842018 @default.
- W2024806284 countsByYear W20248062842019 @default.
- W2024806284 countsByYear W20248062842020 @default.
- W2024806284 countsByYear W20248062842021 @default.
- W2024806284 countsByYear W20248062842022 @default.
- W2024806284 countsByYear W20248062842023 @default.
- W2024806284 crossrefType "journal-article" @default.
- W2024806284 hasAuthorship W2024806284A5015409150 @default.
- W2024806284 hasAuthorship W2024806284A5090924793 @default.
- W2024806284 hasBestOaLocation W20248062841 @default.
- W2024806284 hasConcept C136119220 @default.
- W2024806284 hasConcept C145420912 @default.
- W2024806284 hasConcept C187915474 @default.
- W2024806284 hasConcept C202444582 @default.
- W2024806284 hasConcept C33923547 @default.
- W2024806284 hasConcept C35661339 @default.
- W2024806284 hasConceptScore W2024806284C136119220 @default.
- W2024806284 hasConceptScore W2024806284C145420912 @default.
- W2024806284 hasConceptScore W2024806284C187915474 @default.
- W2024806284 hasConceptScore W2024806284C202444582 @default.
- W2024806284 hasConceptScore W2024806284C33923547 @default.
- W2024806284 hasConceptScore W2024806284C35661339 @default.
- W2024806284 hasIssue "2" @default.
- W2024806284 hasLocation W20248062841 @default.
- W2024806284 hasOpenAccess W2024806284 @default.
- W2024806284 hasPrimaryLocation W20248062841 @default.
- W2024806284 hasRelatedWork W1557945163 @default.
- W2024806284 hasRelatedWork W1985218657 @default.
- W2024806284 hasRelatedWork W2028827359 @default.
- W2024806284 hasRelatedWork W2053895234 @default.
- W2024806284 hasRelatedWork W2064847051 @default.
- W2024806284 hasRelatedWork W2096753949 @default.
- W2024806284 hasRelatedWork W2742285599 @default.
- W2024806284 hasRelatedWork W2963341196 @default.
- W2024806284 hasRelatedWork W3124205579 @default.
- W2024806284 hasRelatedWork W4249580765 @default.
- W2024806284 hasVolume "8" @default.
- W2024806284 isParatext "false" @default.
- W2024806284 isRetracted "false" @default.
- W2024806284 magId "2024806284" @default.
- W2024806284 workType "article" @default.