Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024807564> ?p ?o ?g. }
- W2024807564 endingPage "1212" @default.
- W2024807564 startingPage "1199" @default.
- W2024807564 abstract "Recently, there has been a growing interest in the problem of learning mixture models from data. The reasons and motivations behind this interest are clear, since finite mixture models offer a formal approach to the important problems of clustering and data modeling. In this paper, we address the problem of modeling non-Gaussian data which are largely present, and occur naturally, in several computer vision and image processing applications via the learning of a generative infinite generalized Gaussian mixture model. The proposed model, which can be viewed as a Dirichlet process mixture of generalized Gaussian distributions, takes into account the feature selection problem, also, by determining a set of relevant features for each data cluster which provides better interpretability and generalization capabilities. We propose then an efficient algorithm to learn this infinite model parameters by estimating its posterior distributions using Markov Chain Monte Carlo (MCMC) simulations. We show how the model can be used, while comparing it with other models popular in the literature, in several challenging applications involving photographic and painting images categorization, image and video segmentation, and infrared facial expression recognition." @default.
- W2024807564 created "2016-06-24" @default.
- W2024807564 creator A5064514703 @default.
- W2024807564 creator A5090600716 @default.
- W2024807564 date "2012-11-01" @default.
- W2024807564 modified "2023-09-26" @default.
- W2024807564 title "Generalized Gaussian mixture models as a nonparametric Bayesian approach for clustering using class-specific visual features" @default.
- W2024807564 cites W1499877760 @default.
- W2024807564 cites W1582392998 @default.
- W2024807564 cites W1814500939 @default.
- W2024807564 cites W1968773332 @default.
- W2024807564 cites W1972305392 @default.
- W2024807564 cites W1973594349 @default.
- W2024807564 cites W1991848923 @default.
- W2024807564 cites W1992419399 @default.
- W2024807564 cites W2001983900 @default.
- W2024807564 cites W2006631576 @default.
- W2024807564 cites W2009250875 @default.
- W2024807564 cites W2009985525 @default.
- W2024807564 cites W2010132066 @default.
- W2024807564 cites W2013531076 @default.
- W2024807564 cites W2015245929 @default.
- W2024807564 cites W2015882988 @default.
- W2024807564 cites W2016608935 @default.
- W2024807564 cites W2017236761 @default.
- W2024807564 cites W2022405002 @default.
- W2024807564 cites W2024470753 @default.
- W2024807564 cites W2025120896 @default.
- W2024807564 cites W2033773055 @default.
- W2024807564 cites W2037668034 @default.
- W2024807564 cites W2041993031 @default.
- W2024807564 cites W2042755403 @default.
- W2024807564 cites W2051907993 @default.
- W2024807564 cites W2052535078 @default.
- W2024807564 cites W2057508308 @default.
- W2024807564 cites W2062007038 @default.
- W2024807564 cites W2062017072 @default.
- W2024807564 cites W2069429561 @default.
- W2024807564 cites W2070480229 @default.
- W2024807564 cites W2070612147 @default.
- W2024807564 cites W2079322253 @default.
- W2024807564 cites W2085739805 @default.
- W2024807564 cites W2085927826 @default.
- W2024807564 cites W2089597841 @default.
- W2024807564 cites W2091797506 @default.
- W2024807564 cites W2095130919 @default.
- W2024807564 cites W2096044434 @default.
- W2024807564 cites W2096784803 @default.
- W2024807564 cites W2097458023 @default.
- W2024807564 cites W2102031919 @default.
- W2024807564 cites W2106390385 @default.
- W2024807564 cites W2107192713 @default.
- W2024807564 cites W2111051773 @default.
- W2024807564 cites W2119111184 @default.
- W2024807564 cites W2128794378 @default.
- W2024807564 cites W2132984323 @default.
- W2024807564 cites W2133180260 @default.
- W2024807564 cites W2136319464 @default.
- W2024807564 cites W2140460262 @default.
- W2024807564 cites W2142563577 @default.
- W2024807564 cites W2146764432 @default.
- W2024807564 cites W2150988277 @default.
- W2024807564 cites W2152057642 @default.
- W2024807564 cites W2155404595 @default.
- W2024807564 cites W2157487910 @default.
- W2024807564 cites W2158162781 @default.
- W2024807564 cites W2158816191 @default.
- W2024807564 cites W2159017231 @default.
- W2024807564 cites W2161171655 @default.
- W2024807564 cites W2161916515 @default.
- W2024807564 cites W2162946431 @default.
- W2024807564 cites W2163534628 @default.
- W2024807564 cites W2166502205 @default.
- W2024807564 cites W2170902875 @default.
- W2024807564 cites W2171324559 @default.
- W2024807564 cites W2171930348 @default.
- W2024807564 cites W2425246132 @default.
- W2024807564 cites W2495683074 @default.
- W2024807564 cites W3144510026 @default.
- W2024807564 cites W3147719507 @default.
- W2024807564 cites W32579068 @default.
- W2024807564 cites W4241970783 @default.
- W2024807564 cites W4244098250 @default.
- W2024807564 doi "https://doi.org/10.1016/j.jvcir.2012.08.003" @default.
- W2024807564 hasPublicationYear "2012" @default.
- W2024807564 type Work @default.
- W2024807564 sameAs 2024807564 @default.
- W2024807564 citedByCount "12" @default.
- W2024807564 countsByYear W20248075642013 @default.
- W2024807564 countsByYear W20248075642014 @default.
- W2024807564 countsByYear W20248075642017 @default.
- W2024807564 countsByYear W20248075642018 @default.
- W2024807564 countsByYear W20248075642020 @default.
- W2024807564 countsByYear W20248075642021 @default.
- W2024807564 countsByYear W20248075642022 @default.
- W2024807564 crossrefType "journal-article" @default.
- W2024807564 hasAuthorship W2024807564A5064514703 @default.
- W2024807564 hasAuthorship W2024807564A5090600716 @default.