Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024853191> ?p ?o ?g. }
- W2024853191 endingPage "81" @default.
- W2024853191 startingPage "71" @default.
- W2024853191 abstract "We propose in this paper a doubly weighted subspace learning approach for face representation and recognition. Motivated by the fact that some face samples and parts are more effectual in characterizing and recognizing faces, we construct two weighting matrices based on pairwise similarity of face samples within a same class and discriminant score of each pixel within a face sample to duly emphasize both the between-sample and within-sample features. We then incorporate these two weighting matrices into three popular subspace learning methods, namely principal component analysis, linear discriminant analysis, and nonnegative matrix factorization, to obtain the discriminative features of faces for recognition. Moreover, the proposed doubly weighted technique can be readily extended to other newly proposed subspace learning algorithms to improve their performance. Experimental results show that the proposed approach can effectively enhance the discriminant power of the extracted face features and outperform existing, nonweighted subspace learning algorithms. The performance gain is even more apparent for cases with imbalanced training samples." @default.
- W2024853191 created "2016-06-24" @default.
- W2024853191 creator A5019615508 @default.
- W2024853191 creator A5090079801 @default.
- W2024853191 date "2010-03-01" @default.
- W2024853191 modified "2023-09-27" @default.
- W2024853191 title "A Doubly Weighted Approach for Appearance-Based Subspace Learning Methods" @default.
- W2024853191 cites W1576613474 @default.
- W2024853191 cites W1902027874 @default.
- W2024853191 cites W1996765463 @default.
- W2024853191 cites W2006793117 @default.
- W2024853191 cites W2021012145 @default.
- W2024853191 cites W2072509929 @default.
- W2024853191 cites W2095469431 @default.
- W2024853191 cites W2100493539 @default.
- W2024853191 cites W2117553576 @default.
- W2024853191 cites W2118718620 @default.
- W2024853191 cites W2118976878 @default.
- W2024853191 cites W2120372495 @default.
- W2024853191 cites W2121647436 @default.
- W2024853191 cites W2123921160 @default.
- W2024853191 cites W2123983387 @default.
- W2024853191 cites W2124847261 @default.
- W2024853191 cites W2125331746 @default.
- W2024853191 cites W2125874614 @default.
- W2024853191 cites W2133368777 @default.
- W2024853191 cites W2133764910 @default.
- W2024853191 cites W2134262590 @default.
- W2024853191 cites W2136171036 @default.
- W2024853191 cites W2138451337 @default.
- W2024853191 cites W2141200867 @default.
- W2024853191 cites W2142621404 @default.
- W2024853191 cites W2144730066 @default.
- W2024853191 cites W2146355315 @default.
- W2024853191 cites W2146398330 @default.
- W2024853191 cites W2146474141 @default.
- W2024853191 cites W2146739705 @default.
- W2024853191 cites W2146913572 @default.
- W2024853191 cites W2149292383 @default.
- W2024853191 cites W2154642738 @default.
- W2024853191 cites W2156142937 @default.
- W2024853191 cites W2160254522 @default.
- W2024853191 cites W2163516157 @default.
- W2024853191 cites W2167686991 @default.
- W2024853191 cites W2167999447 @default.
- W2024853191 cites W2169743536 @default.
- W2024853191 cites W2170858770 @default.
- W2024853191 cites W3143596294 @default.
- W2024853191 cites W3148981562 @default.
- W2024853191 cites W2136040699 @default.
- W2024853191 cites W57158167 @default.
- W2024853191 doi "https://doi.org/10.1109/tifs.2009.2035976" @default.
- W2024853191 hasPublicationYear "2010" @default.
- W2024853191 type Work @default.
- W2024853191 sameAs 2024853191 @default.
- W2024853191 citedByCount "38" @default.
- W2024853191 countsByYear W20248531912012 @default.
- W2024853191 countsByYear W20248531912013 @default.
- W2024853191 countsByYear W20248531912014 @default.
- W2024853191 countsByYear W20248531912015 @default.
- W2024853191 countsByYear W20248531912016 @default.
- W2024853191 countsByYear W20248531912017 @default.
- W2024853191 countsByYear W20248531912018 @default.
- W2024853191 crossrefType "journal-article" @default.
- W2024853191 hasAuthorship W2024853191A5019615508 @default.
- W2024853191 hasAuthorship W2024853191A5090079801 @default.
- W2024853191 hasConcept C103278499 @default.
- W2024853191 hasConcept C106135958 @default.
- W2024853191 hasConcept C115961682 @default.
- W2024853191 hasConcept C119857082 @default.
- W2024853191 hasConcept C126838900 @default.
- W2024853191 hasConcept C144024400 @default.
- W2024853191 hasConcept C153180895 @default.
- W2024853191 hasConcept C154945302 @default.
- W2024853191 hasConcept C161584116 @default.
- W2024853191 hasConcept C176917957 @default.
- W2024853191 hasConcept C177384507 @default.
- W2024853191 hasConcept C183115368 @default.
- W2024853191 hasConcept C184898388 @default.
- W2024853191 hasConcept C27438332 @default.
- W2024853191 hasConcept C2779304628 @default.
- W2024853191 hasConcept C31510193 @default.
- W2024853191 hasConcept C32834561 @default.
- W2024853191 hasConcept C36289849 @default.
- W2024853191 hasConcept C41008148 @default.
- W2024853191 hasConcept C69738355 @default.
- W2024853191 hasConcept C71924100 @default.
- W2024853191 hasConcept C78397625 @default.
- W2024853191 hasConcept C97931131 @default.
- W2024853191 hasConceptScore W2024853191C103278499 @default.
- W2024853191 hasConceptScore W2024853191C106135958 @default.
- W2024853191 hasConceptScore W2024853191C115961682 @default.
- W2024853191 hasConceptScore W2024853191C119857082 @default.
- W2024853191 hasConceptScore W2024853191C126838900 @default.
- W2024853191 hasConceptScore W2024853191C144024400 @default.
- W2024853191 hasConceptScore W2024853191C153180895 @default.
- W2024853191 hasConceptScore W2024853191C154945302 @default.
- W2024853191 hasConceptScore W2024853191C161584116 @default.