Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024863357> ?p ?o ?g. }
- W2024863357 endingPage "469" @default.
- W2024863357 startingPage "460" @default.
- W2024863357 abstract "Abstract Polyaniline (PANI)/Precipitated Calcium Carbonate (PCC) composite materials are prepared, for the first time, starting from naturally occurring calcite, and are well characterized. X-ray diffraction (XRD) studies provide information for the presence of unstable vaterite form of PCC in the composites, with an average crystallite size of 26 nm, thus demonstrating the ability of PANI to stabilize, otherwise unstable, vaterite phase of CaCO 3 . Thermal analytical results (TGA and DSC) also provide information for the presence of only PANI and PCC, thus providing information for the purity of the composites. This method, therefore, provides a convenient route to prepare vaterite nanoparticles. Electron Microscopic (FE-SEM) images of the composites confirm that the voids of PANI chains are filled by the spherical nannoparticles of vaterite of diameter ∼ 24 nm, to result in spheres of the composites with an average diameter of 3–4 μm. FTIR spectra show that the PANI exists in its emaraldine form, weakly protonated when prepared at pH 5. Analysis of the FT-IR data for the four composites of PANI/vaterite gives the molar ratios of PANI:vaterite to be 1:4, 1:2, 1:1, 2:1, respectively. The PANI/PCC composites show electrical conductivity of ∼ 1.00 × 10 −5 S cm −1 , which is an impressive value to use these materials as anticorrosive coatings. AC impedance studies also give the conductivities of the PANI/PCC composites to be corresponding to a weakly electronically-conductive emeraldine form of PANI, with equal contributions from the ionic and electronic components, irrespective of the different amounts of vaterite or calcite present in the composites. The DC polarization test confirms equal transport numbers for ions and electrons in PANI samples. The above composites of PANI/vaterite, and a composite of 1:1 molar ratio of PANI/calcite, were mixed with alkyd resin and xylene, separately, to prepare anticorrosive coatings on mild steel (Mole percentages: 98.90% Fe, 0.26% C, 0.04% P, 0.05% S and 0.75% Mn) surfaces. All five composite coatings, with thickness ∼ 40 μm, show dramatic decrease in corrosion current density, and a considerable increase in corrosion resistance, to result in several orders of magnitude lowering of the corrosion rate from that of bare mild steel surfaces and those coated with only alkyd resin. There are considerable positive shifts in the corrosion potential also, when each of the five coatings are applied, separately, on mild steel samples, which provide information for a significant overpotentials induced by these coatings on iron oxidation. All four Alkyd resin/PANI/vaterite coatings show higher anticorrosive performances (by factors of 2 × 10 4 , 5 × 10 4 , 1 × 10 5 and 1.67 × 10 4 , respectively from that of bare mild steel) than that of the Alkyd resin/PANI/calcite coating (by a factor of 1.25 × 10 3 from the same). The improved pore-sealing by relatively smaller (26 nm diameter) and spherical vaterite nanoparticles, when compared with a little larger (38 nm) and somewhat elongated nanoparticles of calcite, is suggested to be responsible for better anticorrosive performance of the Alkyd resin/PANI/vaterite nanocomposites." @default.
- W2024863357 created "2016-06-24" @default.
- W2024863357 creator A5010169637 @default.
- W2024863357 creator A5065887474 @default.
- W2024863357 creator A5068205540 @default.
- W2024863357 creator A5071942009 @default.
- W2024863357 creator A5073572907 @default.
- W2024863357 creator A5082644002 @default.
- W2024863357 date "2014-01-01" @default.
- W2024863357 modified "2023-10-11" @default.
- W2024863357 title "Convenient routes to synthesize uncommon vaterite nanoparticles and the nanocomposites of alkyd resin/polyaniline/vaterite: The latter possessing superior anticorrosive performance on mild steel surfaces" @default.
- W2024863357 cites W1965856436 @default.
- W2024863357 cites W1968342595 @default.
- W2024863357 cites W1970897264 @default.
- W2024863357 cites W1973798710 @default.
- W2024863357 cites W1974638306 @default.
- W2024863357 cites W1977082787 @default.
- W2024863357 cites W1977431401 @default.
- W2024863357 cites W1977858266 @default.
- W2024863357 cites W1980819507 @default.
- W2024863357 cites W1982879065 @default.
- W2024863357 cites W1984640543 @default.
- W2024863357 cites W1984706048 @default.
- W2024863357 cites W1987452381 @default.
- W2024863357 cites W1992852956 @default.
- W2024863357 cites W1992898812 @default.
- W2024863357 cites W1993589026 @default.
- W2024863357 cites W1995176568 @default.
- W2024863357 cites W2000614810 @default.
- W2024863357 cites W2006008932 @default.
- W2024863357 cites W2006446458 @default.
- W2024863357 cites W2008158030 @default.
- W2024863357 cites W2008465425 @default.
- W2024863357 cites W2008732383 @default.
- W2024863357 cites W2012110229 @default.
- W2024863357 cites W2012470285 @default.
- W2024863357 cites W2014929613 @default.
- W2024863357 cites W2023454207 @default.
- W2024863357 cites W2026903616 @default.
- W2024863357 cites W2028141117 @default.
- W2024863357 cites W2031386864 @default.
- W2024863357 cites W2032097573 @default.
- W2024863357 cites W2033029497 @default.
- W2024863357 cites W2033869170 @default.
- W2024863357 cites W2037637263 @default.
- W2024863357 cites W2040001977 @default.
- W2024863357 cites W2040825577 @default.
- W2024863357 cites W2041202677 @default.
- W2024863357 cites W2042202398 @default.
- W2024863357 cites W2044825993 @default.
- W2024863357 cites W2047335929 @default.
- W2024863357 cites W2050560680 @default.
- W2024863357 cites W2051722719 @default.
- W2024863357 cites W2058486122 @default.
- W2024863357 cites W2058749173 @default.
- W2024863357 cites W2066938653 @default.
- W2024863357 cites W2073618964 @default.
- W2024863357 cites W2074334086 @default.
- W2024863357 cites W2080046197 @default.
- W2024863357 cites W2080961446 @default.
- W2024863357 cites W2081866459 @default.
- W2024863357 cites W2085945007 @default.
- W2024863357 cites W2086642794 @default.
- W2024863357 cites W2092140548 @default.
- W2024863357 cites W2135256494 @default.
- W2024863357 cites W2325021694 @default.
- W2024863357 cites W2952554956 @default.
- W2024863357 doi "https://doi.org/10.1016/j.electacta.2013.11.137" @default.
- W2024863357 hasPublicationYear "2014" @default.
- W2024863357 type Work @default.
- W2024863357 sameAs 2024863357 @default.
- W2024863357 citedByCount "26" @default.
- W2024863357 countsByYear W20248633572014 @default.
- W2024863357 countsByYear W20248633572015 @default.
- W2024863357 countsByYear W20248633572016 @default.
- W2024863357 countsByYear W20248633572017 @default.
- W2024863357 countsByYear W20248633572018 @default.
- W2024863357 countsByYear W20248633572019 @default.
- W2024863357 countsByYear W20248633572020 @default.
- W2024863357 countsByYear W20248633572021 @default.
- W2024863357 countsByYear W20248633572022 @default.
- W2024863357 countsByYear W20248633572023 @default.
- W2024863357 crossrefType "journal-article" @default.
- W2024863357 hasAuthorship W2024863357A5010169637 @default.
- W2024863357 hasAuthorship W2024863357A5065887474 @default.
- W2024863357 hasAuthorship W2024863357A5068205540 @default.
- W2024863357 hasAuthorship W2024863357A5071942009 @default.
- W2024863357 hasAuthorship W2024863357A5073572907 @default.
- W2024863357 hasAuthorship W2024863357A5082644002 @default.
- W2024863357 hasConcept C120809312 @default.
- W2024863357 hasConcept C127413603 @default.
- W2024863357 hasConcept C155672457 @default.
- W2024863357 hasConcept C159985019 @default.
- W2024863357 hasConcept C162585328 @default.
- W2024863357 hasConcept C171250308 @default.
- W2024863357 hasConcept C192562407 @default.
- W2024863357 hasConcept C2777580120 @default.
- W2024863357 hasConcept C2777739990 @default.