Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024863971> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2024863971 endingPage "24" @default.
- W2024863971 startingPage "7" @default.
- W2024863971 abstract "In this paper we construct the separable algebraic closure of any field in a topos 8. (A separable closure is a field extension in which every separable polynomial splits and which is generated by the roots of these polynomials. P is a separable polynomial if P and its derivative P’ are relatively prime.) The separable closure lives in a new topos, over b, and has the universal property which makes it a spectrum in the sense of Cole, see [l], [9] and [4, Theorem 6.581. Recall that if 8 is the topos of Sets there are two ways to construct this spectrum. One is to use the &ale topos which is the home of the generic separable closure of an arbitrary commutative ring in Sets (see [3,12]). As shown by Hakim [3, pp. 77-841, this construction can be applied within any Grothendieck topos by setting up the &ale topology (object by object on the defining site of the topos). Alternatively, we can describe the generic separable closure of a field as a field extension in the topos of continuous G-Sets where G is the profinite Galois group. In this paper, we generalize the profinite Galois group approach. We feel that the value of this paper lies not so much in the alternative, more internal, construction of the separable closure but in the topos theoretic structure we develop along the way. We define a profinite group and more generally profinite groupoid, and profinite category in any topos. If I-is a profinite category in 8 then we construct the topos gr of continuous r-actions. We generalize the profinite Galois group of the algebraic closure of a field. In general it is a connected profinite groupoid. As shown in Section 3, below, it is Morita equivalent to a profinite group precisely when the separable closure of K in 8 can be constructed within the topos 8 itself. For example, any field in Sets has an algebraic closure in Sets so the profinite Galois groupoid is effectively equivalent to a profinite group. When there does exist a separable closure of K in 8 itself then the Galois groupoid is equivalent to the profinite group constructed in [6]." @default.
- W2024863971 created "2016-06-24" @default.
- W2024863971 creator A5040925719 @default.
- W2024863971 date "1982-04-01" @default.
- W2024863971 modified "2023-09-27" @default.
- W2024863971 title "Separable algebraic closure in a topos" @default.
- W2024863971 cites W123087045 @default.
- W2024863971 cites W2006735442 @default.
- W2024863971 cites W2059722110 @default.
- W2024863971 cites W2064286312 @default.
- W2024863971 cites W2088888237 @default.
- W2024863971 cites W577129422 @default.
- W2024863971 cites W607804849 @default.
- W2024863971 cites W2181948339 @default.
- W2024863971 cites W86610579 @default.
- W2024863971 doi "https://doi.org/10.1016/0022-4049(82)90055-x" @default.
- W2024863971 hasPublicationYear "1982" @default.
- W2024863971 type Work @default.
- W2024863971 sameAs 2024863971 @default.
- W2024863971 citedByCount "5" @default.
- W2024863971 countsByYear W20248639712014 @default.
- W2024863971 crossrefType "journal-article" @default.
- W2024863971 hasAuthorship W2024863971A5040925719 @default.
- W2024863971 hasBestOaLocation W20248639711 @default.
- W2024863971 hasConcept C118615104 @default.
- W2024863971 hasConcept C124952713 @default.
- W2024863971 hasConcept C134306372 @default.
- W2024863971 hasConcept C136119220 @default.
- W2024863971 hasConcept C142362112 @default.
- W2024863971 hasConcept C146834321 @default.
- W2024863971 hasConcept C162324750 @default.
- W2024863971 hasConcept C182141236 @default.
- W2024863971 hasConcept C182327082 @default.
- W2024863971 hasConcept C186219872 @default.
- W2024863971 hasConcept C202444582 @default.
- W2024863971 hasConcept C33923547 @default.
- W2024863971 hasConcept C34447519 @default.
- W2024863971 hasConcept C51544822 @default.
- W2024863971 hasConcept C70710897 @default.
- W2024863971 hasConcept C78045399 @default.
- W2024863971 hasConcept C9376300 @default.
- W2024863971 hasConceptScore W2024863971C118615104 @default.
- W2024863971 hasConceptScore W2024863971C124952713 @default.
- W2024863971 hasConceptScore W2024863971C134306372 @default.
- W2024863971 hasConceptScore W2024863971C136119220 @default.
- W2024863971 hasConceptScore W2024863971C142362112 @default.
- W2024863971 hasConceptScore W2024863971C146834321 @default.
- W2024863971 hasConceptScore W2024863971C162324750 @default.
- W2024863971 hasConceptScore W2024863971C182141236 @default.
- W2024863971 hasConceptScore W2024863971C182327082 @default.
- W2024863971 hasConceptScore W2024863971C186219872 @default.
- W2024863971 hasConceptScore W2024863971C202444582 @default.
- W2024863971 hasConceptScore W2024863971C33923547 @default.
- W2024863971 hasConceptScore W2024863971C34447519 @default.
- W2024863971 hasConceptScore W2024863971C51544822 @default.
- W2024863971 hasConceptScore W2024863971C70710897 @default.
- W2024863971 hasConceptScore W2024863971C78045399 @default.
- W2024863971 hasConceptScore W2024863971C9376300 @default.
- W2024863971 hasIssue "1" @default.
- W2024863971 hasLocation W20248639711 @default.
- W2024863971 hasOpenAccess W2024863971 @default.
- W2024863971 hasPrimaryLocation W20248639711 @default.
- W2024863971 hasRelatedWork W1963722974 @default.
- W2024863971 hasRelatedWork W2024863971 @default.
- W2024863971 hasRelatedWork W2039457274 @default.
- W2024863971 hasRelatedWork W2075513489 @default.
- W2024863971 hasRelatedWork W2127406700 @default.
- W2024863971 hasRelatedWork W2165986557 @default.
- W2024863971 hasRelatedWork W2323699493 @default.
- W2024863971 hasRelatedWork W2329438091 @default.
- W2024863971 hasRelatedWork W2963983929 @default.
- W2024863971 hasRelatedWork W4286968716 @default.
- W2024863971 hasVolume "24" @default.
- W2024863971 isParatext "false" @default.
- W2024863971 isRetracted "false" @default.
- W2024863971 magId "2024863971" @default.
- W2024863971 workType "article" @default.