Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024886498> ?p ?o ?g. }
- W2024886498 endingPage "2467" @default.
- W2024886498 startingPage "2440" @default.
- W2024886498 abstract "Surface integral-equation methods accelerated with the multilevel fast multipole algorithm (MLFMA) provide a suitable mechanism for electromagnetic analysis of real-life dielectric problems. Unlike the perfect-electric-conductor case, discretizations of surface formulations of dielectric problems yield $2 times 2$ partitioned linear systems. Among various surface formulations, the combined tangential formulation (CTF) is the closest to the category of first-kind integral equations, and hence it yields the most accurate results, particularly when the dielectric constant is high and/or the dielectric problem involves sharp edges and corners. However, matrix equations of CTF are highly ill-conditioned, and their iterative solutions require powerful preconditioners for convergence. Second-kind surface integral-equation formulations yield better conditioned systems, but their conditionings significantly degrade when real-life problems include high dielectric constants. In this paper, for the first time in the context of surface integral-equation methods of dielectric objects, we propose Schur complement preconditioners to increase their robustness and efficiency. First, we approximate the dense system matrix by a sparse near-field matrix, which is formed naturally by MLFMA. The Schur complement preconditioning requires approximate solutions of systems involving the (1,1) partition and the Schur complement. We approximate the inverse of the (1,1) partition with a sparse approximate inverse (SAI) based on the Frobenius norm minimization. For the Schur complement, we first approximate it via incomplete sparse matrix-matrix multiplications, and then we generate its approximate inverse with the same SAI technique. Numerical experiments on sphere, lens, and photonic crystal problems demonstrate the effectiveness of the proposed preconditioners. In particular, the results for the photonic crystal problem, which has both surface singularity and a high dielectric constant, shows that accurate CTF solutions for such problems can be obtained even faster than with second-kind integral equation formulations, with the acceleration provided by the proposed Schur complement preconditioners." @default.
- W2024886498 created "2016-06-24" @default.
- W2024886498 creator A5039212894 @default.
- W2024886498 creator A5044832250 @default.
- W2024886498 creator A5044877035 @default.
- W2024886498 date "2011-01-01" @default.
- W2024886498 modified "2023-10-14" @default.
- W2024886498 title "Schur Complement Preconditioners for Surface Integral-Equation Formulations of Dielectric Problems Solved with the Multilevel Fast Multipole Algorithm" @default.
- W2024886498 cites W1563154332 @default.
- W2024886498 cites W1613455162 @default.
- W2024886498 cites W1964757393 @default.
- W2024886498 cites W1970819214 @default.
- W2024886498 cites W1977553864 @default.
- W2024886498 cites W1977631509 @default.
- W2024886498 cites W1980627823 @default.
- W2024886498 cites W1981220107 @default.
- W2024886498 cites W1986652366 @default.
- W2024886498 cites W1991285463 @default.
- W2024886498 cites W1992749186 @default.
- W2024886498 cites W1994099279 @default.
- W2024886498 cites W1994805693 @default.
- W2024886498 cites W2016557146 @default.
- W2024886498 cites W2028160813 @default.
- W2024886498 cites W2031051746 @default.
- W2024886498 cites W2037666071 @default.
- W2024886498 cites W2038516134 @default.
- W2024886498 cites W2040665936 @default.
- W2024886498 cites W2046170436 @default.
- W2024886498 cites W2054380687 @default.
- W2024886498 cites W2065121047 @default.
- W2024886498 cites W2068758216 @default.
- W2024886498 cites W2068832534 @default.
- W2024886498 cites W2073228757 @default.
- W2024886498 cites W2076693513 @default.
- W2024886498 cites W2077866399 @default.
- W2024886498 cites W2078311192 @default.
- W2024886498 cites W2079361963 @default.
- W2024886498 cites W2100443797 @default.
- W2024886498 cites W2117001964 @default.
- W2024886498 cites W2117088022 @default.
- W2024886498 cites W2128993300 @default.
- W2024886498 cites W2135837798 @default.
- W2024886498 cites W2139182243 @default.
- W2024886498 cites W2141870784 @default.
- W2024886498 cites W2144261934 @default.
- W2024886498 cites W2146212892 @default.
- W2024886498 cites W2150037666 @default.
- W2024886498 cites W2150190025 @default.
- W2024886498 cites W2150606825 @default.
- W2024886498 cites W2153589690 @default.
- W2024886498 cites W2154089789 @default.
- W2024886498 cites W2156588317 @default.
- W2024886498 cites W2158867991 @default.
- W2024886498 cites W2159190344 @default.
- W2024886498 cites W2169195255 @default.
- W2024886498 cites W2169541168 @default.
- W2024886498 doi "https://doi.org/10.1137/090780808" @default.
- W2024886498 hasPublicationYear "2011" @default.
- W2024886498 type Work @default.
- W2024886498 sameAs 2024886498 @default.
- W2024886498 citedByCount "19" @default.
- W2024886498 countsByYear W20248864982012 @default.
- W2024886498 countsByYear W20248864982013 @default.
- W2024886498 countsByYear W20248864982014 @default.
- W2024886498 countsByYear W20248864982015 @default.
- W2024886498 countsByYear W20248864982016 @default.
- W2024886498 countsByYear W20248864982017 @default.
- W2024886498 countsByYear W20248864982019 @default.
- W2024886498 countsByYear W20248864982020 @default.
- W2024886498 countsByYear W20248864982022 @default.
- W2024886498 crossrefType "journal-article" @default.
- W2024886498 hasAuthorship W2024886498A5039212894 @default.
- W2024886498 hasAuthorship W2024886498A5044832250 @default.
- W2024886498 hasAuthorship W2024886498A5044877035 @default.
- W2024886498 hasBestOaLocation W20248864982 @default.
- W2024886498 hasConcept C106487976 @default.
- W2024886498 hasConcept C121332964 @default.
- W2024886498 hasConcept C134306372 @default.
- W2024886498 hasConcept C155332342 @default.
- W2024886498 hasConcept C158693339 @default.
- W2024886498 hasConcept C159985019 @default.
- W2024886498 hasConcept C163716315 @default.
- W2024886498 hasConcept C192562407 @default.
- W2024886498 hasConcept C27016315 @default.
- W2024886498 hasConcept C2731191 @default.
- W2024886498 hasConcept C28826006 @default.
- W2024886498 hasConcept C33923547 @default.
- W2024886498 hasConcept C52765159 @default.
- W2024886498 hasConcept C56372850 @default.
- W2024886498 hasConcept C62520636 @default.
- W2024886498 hasConcept C6802819 @default.
- W2024886498 hasConceptScore W2024886498C106487976 @default.
- W2024886498 hasConceptScore W2024886498C121332964 @default.
- W2024886498 hasConceptScore W2024886498C134306372 @default.
- W2024886498 hasConceptScore W2024886498C155332342 @default.
- W2024886498 hasConceptScore W2024886498C158693339 @default.
- W2024886498 hasConceptScore W2024886498C159985019 @default.
- W2024886498 hasConceptScore W2024886498C163716315 @default.