Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024892001> ?p ?o ?g. }
- W2024892001 endingPage "347" @default.
- W2024892001 startingPage "335" @default.
- W2024892001 abstract "The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain's long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways." @default.
- W2024892001 created "2016-06-24" @default.
- W2024892001 creator A5021823169 @default.
- W2024892001 creator A5026841879 @default.
- W2024892001 creator A5028325717 @default.
- W2024892001 date "2014-04-01" @default.
- W2024892001 modified "2023-10-10" @default.
- W2024892001 title "Network diffusion accurately models the relationship between structural and functional brain connectivity networks" @default.
- W2024892001 cites W1552598564 @default.
- W2024892001 cites W1603307924 @default.
- W2024892001 cites W1837967720 @default.
- W2024892001 cites W1965665664 @default.
- W2024892001 cites W1973422829 @default.
- W2024892001 cites W1974764791 @default.
- W2024892001 cites W1983183519 @default.
- W2024892001 cites W1985983039 @default.
- W2024892001 cites W1986491573 @default.
- W2024892001 cites W1995876521 @default.
- W2024892001 cites W1997491128 @default.
- W2024892001 cites W1998071216 @default.
- W2024892001 cites W1999653836 @default.
- W2024892001 cites W2005644553 @default.
- W2024892001 cites W2006312249 @default.
- W2024892001 cites W2013033805 @default.
- W2024892001 cites W2014302431 @default.
- W2024892001 cites W2019689276 @default.
- W2024892001 cites W2022671987 @default.
- W2024892001 cites W2024202336 @default.
- W2024892001 cites W2027063265 @default.
- W2024892001 cites W2029374903 @default.
- W2024892001 cites W2038212344 @default.
- W2024892001 cites W2039245308 @default.
- W2024892001 cites W2043037283 @default.
- W2024892001 cites W2055389431 @default.
- W2024892001 cites W2058046532 @default.
- W2024892001 cites W2060533864 @default.
- W2024892001 cites W2061214064 @default.
- W2024892001 cites W2063294564 @default.
- W2024892001 cites W2064125324 @default.
- W2024892001 cites W2064965260 @default.
- W2024892001 cites W2066045752 @default.
- W2024892001 cites W2072953659 @default.
- W2024892001 cites W2073433254 @default.
- W2024892001 cites W2089691915 @default.
- W2024892001 cites W2091087712 @default.
- W2024892001 cites W2094510930 @default.
- W2024892001 cites W2095491050 @default.
- W2024892001 cites W2095978766 @default.
- W2024892001 cites W2096476525 @default.
- W2024892001 cites W2106396500 @default.
- W2024892001 cites W2107019796 @default.
- W2024892001 cites W2107692942 @default.
- W2024892001 cites W2113506774 @default.
- W2024892001 cites W2116649573 @default.
- W2024892001 cites W2120895215 @default.
- W2024892001 cites W2121947440 @default.
- W2024892001 cites W2129483560 @default.
- W2024892001 cites W2131181615 @default.
- W2024892001 cites W2152556184 @default.
- W2024892001 cites W2153107438 @default.
- W2024892001 cites W2155298532 @default.
- W2024892001 cites W2156286761 @default.
- W2024892001 cites W2157192535 @default.
- W2024892001 cites W2161515775 @default.
- W2024892001 cites W2162686834 @default.
- W2024892001 cites W2167822639 @default.
- W2024892001 cites W2008052984 @default.
- W2024892001 doi "https://doi.org/10.1016/j.neuroimage.2013.12.039" @default.
- W2024892001 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3951650" @default.
- W2024892001 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24384152" @default.
- W2024892001 hasPublicationYear "2014" @default.
- W2024892001 type Work @default.
- W2024892001 sameAs 2024892001 @default.
- W2024892001 citedByCount "240" @default.
- W2024892001 countsByYear W20248920012014 @default.
- W2024892001 countsByYear W20248920012015 @default.
- W2024892001 countsByYear W20248920012016 @default.
- W2024892001 countsByYear W20248920012017 @default.
- W2024892001 countsByYear W20248920012018 @default.
- W2024892001 countsByYear W20248920012019 @default.
- W2024892001 countsByYear W20248920012020 @default.
- W2024892001 countsByYear W20248920012021 @default.
- W2024892001 countsByYear W20248920012022 @default.
- W2024892001 countsByYear W20248920012023 @default.
- W2024892001 crossrefType "journal-article" @default.
- W2024892001 hasAuthorship W2024892001A5021823169 @default.
- W2024892001 hasAuthorship W2024892001A5026841879 @default.
- W2024892001 hasAuthorship W2024892001A5028325717 @default.
- W2024892001 hasBestOaLocation W20248920012 @default.
- W2024892001 hasConcept C117220453 @default.
- W2024892001 hasConcept C119857082 @default.
- W2024892001 hasConcept C121332964 @default.
- W2024892001 hasConcept C121864883 @default.
- W2024892001 hasConcept C126838900 @default.
- W2024892001 hasConcept C143409427 @default.
- W2024892001 hasConcept C149550507 @default.
- W2024892001 hasConcept C154945302 @default.
- W2024892001 hasConcept C15744967 @default.