Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024897306> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2024897306 abstract "Temporal data, which is a sequence of data tuples measured at successive time instances, is typically very large. Hence instead of mining the entire data, we are interested in dividing the huge data into several smaller intervals of interest which we call temporal neighborhoods. In this paper we propose an approach to generate temporal neighborhoods through unequal depth discretization. We describe two novel algorithms (a) similarity based merging (SMerg) and, (b) stationary distribution based merging (StMerg). These algorithms are based on the robust framework of Markov models and the Markov stationary distribution respectively. We identify temporal neighborhoods with distinct demarcations based on unequal depth discretization of the data. We discuss detailed experimental results in both synthetic and real world data. Specifically we show (i) the efficacy of our approach through precision and recall of labeled bins, (ii) the ground truth validation in real world datasets and, (iii) knowledge discovery in the temporal neighborhoods such as global anomalies. Our results indicate that we are able to identify valuable knowledge based on our ground truth validation from real world traffic data." @default.
- W2024897306 created "2016-06-24" @default.
- W2024897306 creator A5051208435 @default.
- W2024897306 creator A5063541070 @default.
- W2024897306 creator A5074978271 @default.
- W2024897306 date "2009-12-01" @default.
- W2024897306 modified "2023-10-16" @default.
- W2024897306 title "Temporal Neighborhood Discovery Using Markov Models" @default.
- W2024897306 cites W1497467197 @default.
- W2024897306 cites W1965555277 @default.
- W2024897306 cites W1965612527 @default.
- W2024897306 cites W1994027616 @default.
- W2024897306 cites W1995003166 @default.
- W2024897306 cites W2057117782 @default.
- W2024897306 cites W2100718094 @default.
- W2024897306 cites W2141514928 @default.
- W2024897306 cites W2483430316 @default.
- W2024897306 cites W4242702158 @default.
- W2024897306 doi "https://doi.org/10.1109/icdm.2009.26" @default.
- W2024897306 hasPublicationYear "2009" @default.
- W2024897306 type Work @default.
- W2024897306 sameAs 2024897306 @default.
- W2024897306 citedByCount "6" @default.
- W2024897306 countsByYear W20248973062013 @default.
- W2024897306 countsByYear W20248973062014 @default.
- W2024897306 countsByYear W20248973062017 @default.
- W2024897306 countsByYear W20248973062021 @default.
- W2024897306 crossrefType "proceedings-article" @default.
- W2024897306 hasAuthorship W2024897306A5051208435 @default.
- W2024897306 hasAuthorship W2024897306A5063541070 @default.
- W2024897306 hasAuthorship W2024897306A5074978271 @default.
- W2024897306 hasConcept C103278499 @default.
- W2024897306 hasConcept C115961682 @default.
- W2024897306 hasConcept C118615104 @default.
- W2024897306 hasConcept C118930307 @default.
- W2024897306 hasConcept C119857082 @default.
- W2024897306 hasConcept C124101348 @default.
- W2024897306 hasConcept C134306372 @default.
- W2024897306 hasConcept C146849305 @default.
- W2024897306 hasConcept C154945302 @default.
- W2024897306 hasConcept C160920958 @default.
- W2024897306 hasConcept C23224414 @default.
- W2024897306 hasConcept C2522767166 @default.
- W2024897306 hasConcept C3020493868 @default.
- W2024897306 hasConcept C33923547 @default.
- W2024897306 hasConcept C41008148 @default.
- W2024897306 hasConcept C67186912 @default.
- W2024897306 hasConcept C73000952 @default.
- W2024897306 hasConcept C77088390 @default.
- W2024897306 hasConcept C77277458 @default.
- W2024897306 hasConcept C81669768 @default.
- W2024897306 hasConcept C98763669 @default.
- W2024897306 hasConceptScore W2024897306C103278499 @default.
- W2024897306 hasConceptScore W2024897306C115961682 @default.
- W2024897306 hasConceptScore W2024897306C118615104 @default.
- W2024897306 hasConceptScore W2024897306C118930307 @default.
- W2024897306 hasConceptScore W2024897306C119857082 @default.
- W2024897306 hasConceptScore W2024897306C124101348 @default.
- W2024897306 hasConceptScore W2024897306C134306372 @default.
- W2024897306 hasConceptScore W2024897306C146849305 @default.
- W2024897306 hasConceptScore W2024897306C154945302 @default.
- W2024897306 hasConceptScore W2024897306C160920958 @default.
- W2024897306 hasConceptScore W2024897306C23224414 @default.
- W2024897306 hasConceptScore W2024897306C2522767166 @default.
- W2024897306 hasConceptScore W2024897306C3020493868 @default.
- W2024897306 hasConceptScore W2024897306C33923547 @default.
- W2024897306 hasConceptScore W2024897306C41008148 @default.
- W2024897306 hasConceptScore W2024897306C67186912 @default.
- W2024897306 hasConceptScore W2024897306C73000952 @default.
- W2024897306 hasConceptScore W2024897306C77088390 @default.
- W2024897306 hasConceptScore W2024897306C77277458 @default.
- W2024897306 hasConceptScore W2024897306C81669768 @default.
- W2024897306 hasConceptScore W2024897306C98763669 @default.
- W2024897306 hasLocation W20248973061 @default.
- W2024897306 hasOpenAccess W2024897306 @default.
- W2024897306 hasPrimaryLocation W20248973061 @default.
- W2024897306 hasRelatedWork W1583541578 @default.
- W2024897306 hasRelatedWork W1965693111 @default.
- W2024897306 hasRelatedWork W2024897306 @default.
- W2024897306 hasRelatedWork W2091713298 @default.
- W2024897306 hasRelatedWork W2171943719 @default.
- W2024897306 hasRelatedWork W2424157389 @default.
- W2024897306 hasRelatedWork W2576289912 @default.
- W2024897306 hasRelatedWork W2942881172 @default.
- W2024897306 hasRelatedWork W4302889972 @default.
- W2024897306 hasRelatedWork W4381956280 @default.
- W2024897306 isParatext "false" @default.
- W2024897306 isRetracted "false" @default.
- W2024897306 magId "2024897306" @default.
- W2024897306 workType "article" @default.