Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024924277> ?p ?o ?g. }
- W2024924277 endingPage "110" @default.
- W2024924277 startingPage "100" @default.
- W2024924277 abstract "► We use lidar to characterize canopy structural variation in coniferous forest types. ► Lidar quantifies canopy variation and differentiates between these forest types. ► Structural characteristics in forests affect wildlife habitat preferences. ► We predict red-cockaded woodpecker distribution with and without lidar variables. ► Adding lidar to the distribution model significantly improves predictive power. Accurate measurement of forest canopy structure is critical for understanding forest-wildlife habitat relationships. Although most theory and application have been based on in situ measurements, imaging technologies such as Light Detection and Ranging (lidar) provide measurements that are both vertically accurate and horizontally extensive. We use small-footprint, multiple-return lidar from a state-wide dataset (1-m footprint, 0.11 point/m 2 ) to characterize the vertical and horizontal structure of successional loblolly pine ( Pinus taeda ) and mature, fire-maintained longleaf pine ( Pinus palustris ) forests on the coastal plain of North Carolina, USA. The relationship between these characteristics and the federally-endangered red-cockaded woodpecker’s ( Picoides borealis , Vieillot) habitat preferences were assessed; as this species has a strong affinity for mature longleaf pine forests. Vertical structure was characterized by lidar-derived metrics (e.g., average and standard deviation of canopy height) and horizontal patterns of vertical structure were quantified by semivariograms and lacunarity analysis. Lidar metrics were compared with field measurements of stand structure and with woodpecker habitat use. We predicted woodpecker distribution using the Maxent species distribution modeling algorithm with elevation, landcover, and hydrography geospatial variables, with and without lidar-derived structural variables. Lidar successfully quantified canopy variation and differentiated between the structural characteristics of these two similar coniferous evergreen forest types (e.g. significant differences in maximum height, canopy cover, and size classes). Loblolly stands were found to have the tallest trees on average with a higher canopy cover. Both semivariograms and lacunarity analyses clearly differentiated between evergreen forest structural types (e.g. semivariogram range was 18.7 m for longleaf, 32.3 m for loblolly). By examining the immediate area around cavity nesting sites we found taller trees than those found across broader foraging sites. The species distribution model accurately predicted woodpecker distribution (tested with woodpecker presence, AUC > .85). The addition of lidar-derived variables improved the model’s predictive power by 8% compared to the model based only on elevation, landcover, and hydrography environmental variables. We show that relatively low density lidar data are valuable for wildlife studies by characterizing and separating similar canopy types, describing different use zones (foraging vs. nesting), and for use in species distribution models." @default.
- W2024924277 created "2016-06-24" @default.
- W2024924277 creator A5034473862 @default.
- W2024924277 creator A5041152157 @default.
- W2024924277 creator A5087069366 @default.
- W2024924277 creator A5088061252 @default.
- W2024924277 date "2012-10-01" @default.
- W2024924277 modified "2023-10-17" @default.
- W2024924277 title "Three-dimensional characterization of pine forest type and red-cockaded woodpecker habitat by small-footprint, discrete-return lidar" @default.
- W2024924277 cites W1481031476 @default.
- W2024924277 cites W1866936596 @default.
- W2024924277 cites W1895080970 @default.
- W2024924277 cites W1965043554 @default.
- W2024924277 cites W1966505843 @default.
- W2024924277 cites W1970298122 @default.
- W2024924277 cites W1984666204 @default.
- W2024924277 cites W2002257312 @default.
- W2024924277 cites W2016281273 @default.
- W2024924277 cites W2019861195 @default.
- W2024924277 cites W2029449972 @default.
- W2024924277 cites W2030337367 @default.
- W2024924277 cites W2033045233 @default.
- W2024924277 cites W2037528563 @default.
- W2024924277 cites W2044769733 @default.
- W2024924277 cites W2048463265 @default.
- W2024924277 cites W2054058513 @default.
- W2024924277 cites W2056466863 @default.
- W2024924277 cites W2068239518 @default.
- W2024924277 cites W2073597988 @default.
- W2024924277 cites W2076085372 @default.
- W2024924277 cites W2082012651 @default.
- W2024924277 cites W2083667368 @default.
- W2024924277 cites W2094250422 @default.
- W2024924277 cites W2097337758 @default.
- W2024924277 cites W2098919237 @default.
- W2024924277 cites W2101944319 @default.
- W2024924277 cites W2104252070 @default.
- W2024924277 cites W2105058098 @default.
- W2024924277 cites W2112315008 @default.
- W2024924277 cites W2113488626 @default.
- W2024924277 cites W2119709769 @default.
- W2024924277 cites W2123689744 @default.
- W2024924277 cites W2123831665 @default.
- W2024924277 cites W2128565996 @default.
- W2024924277 cites W2129464821 @default.
- W2024924277 cites W2135731652 @default.
- W2024924277 cites W2136636747 @default.
- W2024924277 cites W2139416101 @default.
- W2024924277 cites W2140709395 @default.
- W2024924277 cites W2140983649 @default.
- W2024924277 cites W2145716123 @default.
- W2024924277 cites W2146664181 @default.
- W2024924277 cites W2152515840 @default.
- W2024924277 cites W2157159927 @default.
- W2024924277 cites W2161554243 @default.
- W2024924277 cites W2178388900 @default.
- W2024924277 cites W2273297058 @default.
- W2024924277 cites W2320784887 @default.
- W2024924277 cites W2325992004 @default.
- W2024924277 cites W4233331630 @default.
- W2024924277 doi "https://doi.org/10.1016/j.foreco.2012.06.020" @default.
- W2024924277 hasPublicationYear "2012" @default.
- W2024924277 type Work @default.
- W2024924277 sameAs 2024924277 @default.
- W2024924277 citedByCount "58" @default.
- W2024924277 countsByYear W20249242772013 @default.
- W2024924277 countsByYear W20249242772014 @default.
- W2024924277 countsByYear W20249242772015 @default.
- W2024924277 countsByYear W20249242772016 @default.
- W2024924277 countsByYear W20249242772017 @default.
- W2024924277 countsByYear W20249242772018 @default.
- W2024924277 countsByYear W20249242772019 @default.
- W2024924277 countsByYear W20249242772020 @default.
- W2024924277 countsByYear W20249242772021 @default.
- W2024924277 countsByYear W20249242772022 @default.
- W2024924277 countsByYear W20249242772023 @default.
- W2024924277 crossrefType "journal-article" @default.
- W2024924277 hasAuthorship W2024924277A5034473862 @default.
- W2024924277 hasAuthorship W2024924277A5041152157 @default.
- W2024924277 hasAuthorship W2024924277A5087069366 @default.
- W2024924277 hasAuthorship W2024924277A5088061252 @default.
- W2024924277 hasConcept C101000010 @default.
- W2024924277 hasConcept C185933670 @default.
- W2024924277 hasConcept C18903297 @default.
- W2024924277 hasConcept C205649164 @default.
- W2024924277 hasConcept C2776190662 @default.
- W2024924277 hasConcept C39432304 @default.
- W2024924277 hasConcept C51399673 @default.
- W2024924277 hasConcept C62649853 @default.
- W2024924277 hasConcept C86803240 @default.
- W2024924277 hasConceptScore W2024924277C101000010 @default.
- W2024924277 hasConceptScore W2024924277C185933670 @default.
- W2024924277 hasConceptScore W2024924277C18903297 @default.
- W2024924277 hasConceptScore W2024924277C205649164 @default.
- W2024924277 hasConceptScore W2024924277C2776190662 @default.
- W2024924277 hasConceptScore W2024924277C39432304 @default.
- W2024924277 hasConceptScore W2024924277C51399673 @default.
- W2024924277 hasConceptScore W2024924277C62649853 @default.