Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024956893> ?p ?o ?g. }
- W2024956893 endingPage "145" @default.
- W2024956893 startingPage "139" @default.
- W2024956893 abstract "Clustering is one of the most useful tasks in data mining process for discovering groups and identifying interesting distributions and patterns in the underlying data. One of the techniques of data clustering was performed by introducing a clustering attribute. Soft set theory, initiated by Molodtsov in 1999, is a new general mathematical tool for dealing with uncertainties. In this paper, we define a soft set model on the equivalence classes of an information system, which can be easily applied in obtaining approximate sets of rough sets. Furthermore, we use it to select a clustering attribute for categorical datasets and a heuristic algorithm is presented. Experiment results on fifteen UCI benchmark datasets showed that the proposed approach provides a faster decision in selecting a clustering attribute as compared with maximum dependency attributes (MDAs) approach up to 14.84%. Furthermore, MDA and NSS have a good scalability i.e. the executing time of both algorithms tends to increase linearly as the number of instances and attributes are increased, respectively." @default.
- W2024956893 created "2016-06-24" @default.
- W2024956893 creator A5046044880 @default.
- W2024956893 creator A5047002005 @default.
- W2024956893 creator A5084810449 @default.
- W2024956893 creator A5091461961 @default.
- W2024956893 date "2012-12-01" @default.
- W2024956893 modified "2023-10-09" @default.
- W2024956893 title "A novel soft set approach in selecting clustering attribute" @default.
- W2024956893 cites W1968534631 @default.
- W2024956893 cites W1969357663 @default.
- W2024956893 cites W1976283061 @default.
- W2024956893 cites W1978352585 @default.
- W2024956893 cites W1979152784 @default.
- W2024956893 cites W1980197257 @default.
- W2024956893 cites W1982869853 @default.
- W2024956893 cites W1982907249 @default.
- W2024956893 cites W1990975338 @default.
- W2024956893 cites W1997250138 @default.
- W2024956893 cites W1999400784 @default.
- W2024956893 cites W2012413672 @default.
- W2024956893 cites W2036999870 @default.
- W2024956893 cites W2042560256 @default.
- W2024956893 cites W2068243398 @default.
- W2024956893 cites W2070073440 @default.
- W2024956893 cites W2071586798 @default.
- W2024956893 cites W2072396572 @default.
- W2024956893 cites W2074196524 @default.
- W2024956893 cites W2076704345 @default.
- W2024956893 cites W2079051990 @default.
- W2024956893 cites W2128877126 @default.
- W2024956893 cites W2129066856 @default.
- W2024956893 cites W2143451122 @default.
- W2024956893 cites W2152845619 @default.
- W2024956893 cites W4211007335 @default.
- W2024956893 cites W4255833381 @default.
- W2024956893 doi "https://doi.org/10.1016/j.knosys.2012.06.001" @default.
- W2024956893 hasPublicationYear "2012" @default.
- W2024956893 type Work @default.
- W2024956893 sameAs 2024956893 @default.
- W2024956893 citedByCount "58" @default.
- W2024956893 countsByYear W20249568932013 @default.
- W2024956893 countsByYear W20249568932014 @default.
- W2024956893 countsByYear W20249568932015 @default.
- W2024956893 countsByYear W20249568932016 @default.
- W2024956893 countsByYear W20249568932017 @default.
- W2024956893 countsByYear W20249568932018 @default.
- W2024956893 countsByYear W20249568932019 @default.
- W2024956893 countsByYear W20249568932020 @default.
- W2024956893 countsByYear W20249568932021 @default.
- W2024956893 countsByYear W20249568932022 @default.
- W2024956893 countsByYear W20249568932023 @default.
- W2024956893 crossrefType "journal-article" @default.
- W2024956893 hasAuthorship W2024956893A5046044880 @default.
- W2024956893 hasAuthorship W2024956893A5047002005 @default.
- W2024956893 hasAuthorship W2024956893A5084810449 @default.
- W2024956893 hasAuthorship W2024956893A5091461961 @default.
- W2024956893 hasConcept C111012933 @default.
- W2024956893 hasConcept C119857082 @default.
- W2024956893 hasConcept C124101348 @default.
- W2024956893 hasConcept C13280743 @default.
- W2024956893 hasConcept C154945302 @default.
- W2024956893 hasConcept C173801870 @default.
- W2024956893 hasConcept C177264268 @default.
- W2024956893 hasConcept C185798385 @default.
- W2024956893 hasConcept C199360897 @default.
- W2024956893 hasConcept C205649164 @default.
- W2024956893 hasConcept C2777037408 @default.
- W2024956893 hasConcept C41008148 @default.
- W2024956893 hasConcept C48044578 @default.
- W2024956893 hasConcept C5274069 @default.
- W2024956893 hasConcept C58166 @default.
- W2024956893 hasConcept C73555534 @default.
- W2024956893 hasConcept C77088390 @default.
- W2024956893 hasConceptScore W2024956893C111012933 @default.
- W2024956893 hasConceptScore W2024956893C119857082 @default.
- W2024956893 hasConceptScore W2024956893C124101348 @default.
- W2024956893 hasConceptScore W2024956893C13280743 @default.
- W2024956893 hasConceptScore W2024956893C154945302 @default.
- W2024956893 hasConceptScore W2024956893C173801870 @default.
- W2024956893 hasConceptScore W2024956893C177264268 @default.
- W2024956893 hasConceptScore W2024956893C185798385 @default.
- W2024956893 hasConceptScore W2024956893C199360897 @default.
- W2024956893 hasConceptScore W2024956893C205649164 @default.
- W2024956893 hasConceptScore W2024956893C2777037408 @default.
- W2024956893 hasConceptScore W2024956893C41008148 @default.
- W2024956893 hasConceptScore W2024956893C48044578 @default.
- W2024956893 hasConceptScore W2024956893C5274069 @default.
- W2024956893 hasConceptScore W2024956893C58166 @default.
- W2024956893 hasConceptScore W2024956893C73555534 @default.
- W2024956893 hasConceptScore W2024956893C77088390 @default.
- W2024956893 hasLocation W20249568931 @default.
- W2024956893 hasOpenAccess W2024956893 @default.
- W2024956893 hasPrimaryLocation W20249568931 @default.
- W2024956893 hasRelatedWork W2032972115 @default.
- W2024956893 hasRelatedWork W2042267253 @default.
- W2024956893 hasRelatedWork W2074193720 @default.
- W2024956893 hasRelatedWork W2106055054 @default.