Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024975041> ?p ?o ?g. }
- W2024975041 endingPage "33133" @default.
- W2024975041 startingPage "33123" @default.
- W2024975041 abstract "ABCG2 is an ATP-binding cassette (ABC) transporter preferentially expressed by immature human hematopoietic progenitors. Due to its role in drug resistance, its expression has been correlated with a protection role against protoporhyrin IX (PPIX) accumulation in stem cells under hypoxic conditions. We show here that zinc mesoporphyrin, a validated fluorescent heme analog, is transported by ABCG2. We also show that the ABCG2 large extracellular loop ECL3 constitutes a porphyrin-binding domain, which strongly interacts with heme, hemin, PPIX, ZnPPIX, CoPPIX, and much less efficiently with pheophorbide a, but not with vitamin B12. Kd values are in the range 0.5–3.5 μm, with heme displaying the highest affinity. Nonporphyrin substrates of ABCG2, such as mitoxantrone, doxo/daunorubicin, and riboflavin, do not bind to ECL3. Single-point mutations H583A and C603A inside ECL3 prevent the binding of hemin but hardly affect that of iron-free PPIX. The extracellular location of ECL3 downstream from the transport sites suggests that, after membrane translocation, hemin is transferred to ECL3, which is strategically positioned to release the bound porphyrin to extracellular partners. We show here that human serum albumin could be one of these possible partners as it removes hemin bound to ECL3 and interacts with ABCG2, with a Kd of about 3 μm. ABCG2 is an ATP-binding cassette (ABC) transporter preferentially expressed by immature human hematopoietic progenitors. Due to its role in drug resistance, its expression has been correlated with a protection role against protoporhyrin IX (PPIX) accumulation in stem cells under hypoxic conditions. We show here that zinc mesoporphyrin, a validated fluorescent heme analog, is transported by ABCG2. We also show that the ABCG2 large extracellular loop ECL3 constitutes a porphyrin-binding domain, which strongly interacts with heme, hemin, PPIX, ZnPPIX, CoPPIX, and much less efficiently with pheophorbide a, but not with vitamin B12. Kd values are in the range 0.5–3.5 μm, with heme displaying the highest affinity. Nonporphyrin substrates of ABCG2, such as mitoxantrone, doxo/daunorubicin, and riboflavin, do not bind to ECL3. Single-point mutations H583A and C603A inside ECL3 prevent the binding of hemin but hardly affect that of iron-free PPIX. The extracellular location of ECL3 downstream from the transport sites suggests that, after membrane translocation, hemin is transferred to ECL3, which is strategically positioned to release the bound porphyrin to extracellular partners. We show here that human serum albumin could be one of these possible partners as it removes hemin bound to ECL3 and interacts with ABCG2, with a Kd of about 3 μm." @default.
- W2024975041 created "2016-06-24" @default.
- W2024975041 creator A5035954119 @default.
- W2024975041 creator A5045822449 @default.
- W2024975041 creator A5071030097 @default.
- W2024975041 creator A5076196953 @default.
- W2024975041 creator A5077109887 @default.
- W2024975041 creator A5047807457 @default.
- W2024975041 date "2010-10-01" @default.
- W2024975041 modified "2023-10-14" @default.
- W2024975041 title "ABCG2 Transports and Transfers Heme to Albumin through Its Large Extracellular Loop*" @default.
- W2024975041 cites W1483167997 @default.
- W2024975041 cites W1908587496 @default.
- W2024975041 cites W1966440700 @default.
- W2024975041 cites W1967392861 @default.
- W2024975041 cites W1968108412 @default.
- W2024975041 cites W1970340527 @default.
- W2024975041 cites W1977605312 @default.
- W2024975041 cites W1977748061 @default.
- W2024975041 cites W1982811255 @default.
- W2024975041 cites W1989270637 @default.
- W2024975041 cites W1992063937 @default.
- W2024975041 cites W1993373855 @default.
- W2024975041 cites W1996085606 @default.
- W2024975041 cites W2006370393 @default.
- W2024975041 cites W2006754144 @default.
- W2024975041 cites W2011988471 @default.
- W2024975041 cites W2023726613 @default.
- W2024975041 cites W2026447666 @default.
- W2024975041 cites W2029434252 @default.
- W2024975041 cites W2029570717 @default.
- W2024975041 cites W2033020367 @default.
- W2024975041 cites W2035707213 @default.
- W2024975041 cites W2036459315 @default.
- W2024975041 cites W2042386685 @default.
- W2024975041 cites W2046792018 @default.
- W2024975041 cites W2053426133 @default.
- W2024975041 cites W2054714665 @default.
- W2024975041 cites W2064262345 @default.
- W2024975041 cites W2067176977 @default.
- W2024975041 cites W2070691527 @default.
- W2024975041 cites W2071937914 @default.
- W2024975041 cites W2072532289 @default.
- W2024975041 cites W2084247083 @default.
- W2024975041 cites W2084311640 @default.
- W2024975041 cites W2094077114 @default.
- W2024975041 cites W2104711019 @default.
- W2024975041 cites W2106882534 @default.
- W2024975041 cites W2111010372 @default.
- W2024975041 cites W2111105168 @default.
- W2024975041 cites W2111237131 @default.
- W2024975041 cites W2118667947 @default.
- W2024975041 cites W2119426268 @default.
- W2024975041 cites W2120324273 @default.
- W2024975041 cites W2121035385 @default.
- W2024975041 cites W2132492733 @default.
- W2024975041 cites W2140260269 @default.
- W2024975041 cites W2150485214 @default.
- W2024975041 cites W2152796692 @default.
- W2024975041 cites W2156645589 @default.
- W2024975041 cites W2160898059 @default.
- W2024975041 cites W2168471377 @default.
- W2024975041 cites W2176449333 @default.
- W2024975041 cites W4232534952 @default.
- W2024975041 doi "https://doi.org/10.1074/jbc.m110.139170" @default.
- W2024975041 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2963377" @default.
- W2024975041 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20705604" @default.
- W2024975041 hasPublicationYear "2010" @default.
- W2024975041 type Work @default.
- W2024975041 sameAs 2024975041 @default.
- W2024975041 citedByCount "79" @default.
- W2024975041 countsByYear W20249750412012 @default.
- W2024975041 countsByYear W20249750412013 @default.
- W2024975041 countsByYear W20249750412014 @default.
- W2024975041 countsByYear W20249750412015 @default.
- W2024975041 countsByYear W20249750412016 @default.
- W2024975041 countsByYear W20249750412017 @default.
- W2024975041 countsByYear W20249750412018 @default.
- W2024975041 countsByYear W20249750412019 @default.
- W2024975041 countsByYear W20249750412020 @default.
- W2024975041 countsByYear W20249750412021 @default.
- W2024975041 countsByYear W20249750412022 @default.
- W2024975041 countsByYear W20249750412023 @default.
- W2024975041 crossrefType "journal-article" @default.
- W2024975041 hasAuthorship W2024975041A5035954119 @default.
- W2024975041 hasAuthorship W2024975041A5045822449 @default.
- W2024975041 hasAuthorship W2024975041A5047807457 @default.
- W2024975041 hasAuthorship W2024975041A5071030097 @default.
- W2024975041 hasAuthorship W2024975041A5076196953 @default.
- W2024975041 hasAuthorship W2024975041A5077109887 @default.
- W2024975041 hasBestOaLocation W20249750411 @default.
- W2024975041 hasConcept C104317684 @default.
- W2024975041 hasConcept C12554922 @default.
- W2024975041 hasConcept C149011108 @default.
- W2024975041 hasConcept C178790620 @default.
- W2024975041 hasConcept C181199279 @default.
- W2024975041 hasConcept C185592680 @default.
- W2024975041 hasConcept C2776217839 @default.