Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024989440> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2024989440 endingPage "645" @default.
- W2024989440 startingPage "621" @default.
- W2024989440 abstract "In this paper, we explore the automatic explanation of multivariate time series (MTS) through learning dynamic Bayesian networks (DBNs). We have developed an evolutionary algorithm which exploits certain characteristics of MTS in order to generate good networks as quickly as possible. We compare this algorithm to other standard learning algorithms that have traditionally been used for static Bayesian networks but are adapted for DBNs in this paper. These are extensively tested on both synthetic and real-world MTS for various aspects of efficiency and accuracy. By proposing a simple representation scheme, an efficient learning methodology, and several useful heuristics, we have found that the proposed method is more efficient for learning DBNs from MTS with large time lags, especially in time-demanding situations. © 2001 John Wiley & Sons, Inc." @default.
- W2024989440 created "2016-06-24" @default.
- W2024989440 creator A5004397914 @default.
- W2024989440 creator A5005716099 @default.
- W2024989440 creator A5035358476 @default.
- W2024989440 date "2001-01-01" @default.
- W2024989440 modified "2023-09-27" @default.
- W2024989440 title "Evolutionary learning of dynamic probabilistic models with large time lags" @default.
- W2024989440 cites W1505407161 @default.
- W2024989440 cites W1559956479 @default.
- W2024989440 cites W1988814833 @default.
- W2024989440 cites W2090803762 @default.
- W2024989440 cites W2129999935 @default.
- W2024989440 cites W2161632986 @default.
- W2024989440 cites W2166103330 @default.
- W2024989440 doi "https://doi.org/10.1002/int.1027" @default.
- W2024989440 hasPublicationYear "2001" @default.
- W2024989440 type Work @default.
- W2024989440 sameAs 2024989440 @default.
- W2024989440 citedByCount "25" @default.
- W2024989440 countsByYear W20249894402013 @default.
- W2024989440 countsByYear W20249894402014 @default.
- W2024989440 countsByYear W20249894402015 @default.
- W2024989440 countsByYear W20249894402017 @default.
- W2024989440 countsByYear W20249894402020 @default.
- W2024989440 countsByYear W20249894402021 @default.
- W2024989440 countsByYear W20249894402022 @default.
- W2024989440 crossrefType "journal-article" @default.
- W2024989440 hasAuthorship W2024989440A5004397914 @default.
- W2024989440 hasAuthorship W2024989440A5005716099 @default.
- W2024989440 hasAuthorship W2024989440A5035358476 @default.
- W2024989440 hasBestOaLocation W20249894402 @default.
- W2024989440 hasConcept C111472728 @default.
- W2024989440 hasConcept C111919701 @default.
- W2024989440 hasConcept C119857082 @default.
- W2024989440 hasConcept C127705205 @default.
- W2024989440 hasConcept C138885662 @default.
- W2024989440 hasConcept C154945302 @default.
- W2024989440 hasConcept C165696696 @default.
- W2024989440 hasConcept C17744445 @default.
- W2024989440 hasConcept C199539241 @default.
- W2024989440 hasConcept C2776359362 @default.
- W2024989440 hasConcept C2780586882 @default.
- W2024989440 hasConcept C33724603 @default.
- W2024989440 hasConcept C38652104 @default.
- W2024989440 hasConcept C41008148 @default.
- W2024989440 hasConcept C49937458 @default.
- W2024989440 hasConcept C82142266 @default.
- W2024989440 hasConcept C94625758 @default.
- W2024989440 hasConceptScore W2024989440C111472728 @default.
- W2024989440 hasConceptScore W2024989440C111919701 @default.
- W2024989440 hasConceptScore W2024989440C119857082 @default.
- W2024989440 hasConceptScore W2024989440C127705205 @default.
- W2024989440 hasConceptScore W2024989440C138885662 @default.
- W2024989440 hasConceptScore W2024989440C154945302 @default.
- W2024989440 hasConceptScore W2024989440C165696696 @default.
- W2024989440 hasConceptScore W2024989440C17744445 @default.
- W2024989440 hasConceptScore W2024989440C199539241 @default.
- W2024989440 hasConceptScore W2024989440C2776359362 @default.
- W2024989440 hasConceptScore W2024989440C2780586882 @default.
- W2024989440 hasConceptScore W2024989440C33724603 @default.
- W2024989440 hasConceptScore W2024989440C38652104 @default.
- W2024989440 hasConceptScore W2024989440C41008148 @default.
- W2024989440 hasConceptScore W2024989440C49937458 @default.
- W2024989440 hasConceptScore W2024989440C82142266 @default.
- W2024989440 hasConceptScore W2024989440C94625758 @default.
- W2024989440 hasIssue "5" @default.
- W2024989440 hasLocation W20249894401 @default.
- W2024989440 hasLocation W20249894402 @default.
- W2024989440 hasOpenAccess W2024989440 @default.
- W2024989440 hasPrimaryLocation W20249894401 @default.
- W2024989440 hasRelatedWork W1553487949 @default.
- W2024989440 hasRelatedWork W1575868721 @default.
- W2024989440 hasRelatedWork W1992506498 @default.
- W2024989440 hasRelatedWork W2030014066 @default.
- W2024989440 hasRelatedWork W2106314226 @default.
- W2024989440 hasRelatedWork W2165709915 @default.
- W2024989440 hasRelatedWork W2189510368 @default.
- W2024989440 hasRelatedWork W2207154365 @default.
- W2024989440 hasRelatedWork W4385957992 @default.
- W2024989440 hasRelatedWork W1499722775 @default.
- W2024989440 hasVolume "16" @default.
- W2024989440 isParatext "false" @default.
- W2024989440 isRetracted "false" @default.
- W2024989440 magId "2024989440" @default.
- W2024989440 workType "article" @default.