Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024994422> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2024994422 abstract "Machine learning techniques like pointwise classification are widely used for object detection and segmentation. However, for large search spaces like CT images, this approach becomes computationally very demanding. Designing strong yet compact classifiers is thus of great importance for systems that ought to be clinically used as time is a limiting factor in clinical routine. The runtime of a system plays an important role in the decision about its application. In this paper we propose a novel technique for reducing the computational complexity of voxel classification systems based on the well-known AdaBoost algorithm in general and Probabilistic Boosting Trees in particular. We describe a means of incorporating a measure of hypothesis complexity into the optimization process, resulting in classifiers with lower evaluation cost. More specifically, in our approach the hypothesis generation that is performed during the AdaBoost training is no longer based only on the error of a hypothesis but also on its complexity. This leads to a reduced overall classifier complexity and thus shorter evaluation times. The validity of the approach is shown in an experimental evaluation. In a cross validation experiment, a system for automatic segmentation of liver tumors in CT images, that is based on the Probabilistic Boosting Tree, was trained with and without the proposed extension. In this preliminary study, the evaluation cost for classifying previously unseen samples could be reduced by 83% using the methods described here without losing classification accuracy." @default.
- W2024994422 created "2016-06-24" @default.
- W2024994422 creator A5024750744 @default.
- W2024994422 creator A5058662444 @default.
- W2024994422 creator A5091331768 @default.
- W2024994422 date "2011-03-03" @default.
- W2024994422 modified "2023-09-27" @default.
- W2024994422 title "A cost constrained boosting algorithm for fast lesion detection and segmentation" @default.
- W2024994422 cites W1567270145 @default.
- W2024994422 cites W1988790447 @default.
- W2024994422 cites W2024046085 @default.
- W2024994422 cites W2033271301 @default.
- W2024994422 cites W2101187464 @default.
- W2024994422 cites W2120023383 @default.
- W2024994422 cites W2146514558 @default.
- W2024994422 cites W2158837149 @default.
- W2024994422 cites W2164598857 @default.
- W2024994422 doi "https://doi.org/10.1117/12.877944" @default.
- W2024994422 hasPublicationYear "2011" @default.
- W2024994422 type Work @default.
- W2024994422 sameAs 2024994422 @default.
- W2024994422 citedByCount "1" @default.
- W2024994422 countsByYear W20249944222015 @default.
- W2024994422 crossrefType "proceedings-article" @default.
- W2024994422 hasAuthorship W2024994422A5024750744 @default.
- W2024994422 hasAuthorship W2024994422A5058662444 @default.
- W2024994422 hasAuthorship W2024994422A5091331768 @default.
- W2024994422 hasConcept C11413529 @default.
- W2024994422 hasConcept C119857082 @default.
- W2024994422 hasConcept C124504099 @default.
- W2024994422 hasConcept C134306372 @default.
- W2024994422 hasConcept C141404830 @default.
- W2024994422 hasConcept C153180895 @default.
- W2024994422 hasConcept C154945302 @default.
- W2024994422 hasConcept C179799912 @default.
- W2024994422 hasConcept C2777984123 @default.
- W2024994422 hasConcept C33923547 @default.
- W2024994422 hasConcept C41008148 @default.
- W2024994422 hasConcept C46686674 @default.
- W2024994422 hasConcept C49937458 @default.
- W2024994422 hasConcept C84525736 @default.
- W2024994422 hasConcept C89600930 @default.
- W2024994422 hasConcept C95623464 @default.
- W2024994422 hasConceptScore W2024994422C11413529 @default.
- W2024994422 hasConceptScore W2024994422C119857082 @default.
- W2024994422 hasConceptScore W2024994422C124504099 @default.
- W2024994422 hasConceptScore W2024994422C134306372 @default.
- W2024994422 hasConceptScore W2024994422C141404830 @default.
- W2024994422 hasConceptScore W2024994422C153180895 @default.
- W2024994422 hasConceptScore W2024994422C154945302 @default.
- W2024994422 hasConceptScore W2024994422C179799912 @default.
- W2024994422 hasConceptScore W2024994422C2777984123 @default.
- W2024994422 hasConceptScore W2024994422C33923547 @default.
- W2024994422 hasConceptScore W2024994422C41008148 @default.
- W2024994422 hasConceptScore W2024994422C46686674 @default.
- W2024994422 hasConceptScore W2024994422C49937458 @default.
- W2024994422 hasConceptScore W2024994422C84525736 @default.
- W2024994422 hasConceptScore W2024994422C89600930 @default.
- W2024994422 hasConceptScore W2024994422C95623464 @default.
- W2024994422 hasLocation W20249944221 @default.
- W2024994422 hasOpenAccess W2024994422 @default.
- W2024994422 hasPrimaryLocation W20249944221 @default.
- W2024994422 hasRelatedWork W2010832783 @default.
- W2024994422 hasRelatedWork W2897195263 @default.
- W2024994422 hasRelatedWork W2944309180 @default.
- W2024994422 hasRelatedWork W3160598045 @default.
- W2024994422 hasRelatedWork W3204641204 @default.
- W2024994422 hasRelatedWork W3212730154 @default.
- W2024994422 hasRelatedWork W4200057378 @default.
- W2024994422 hasRelatedWork W4249229055 @default.
- W2024994422 hasRelatedWork W4293069612 @default.
- W2024994422 hasRelatedWork W4375930479 @default.
- W2024994422 isParatext "false" @default.
- W2024994422 isRetracted "false" @default.
- W2024994422 magId "2024994422" @default.
- W2024994422 workType "article" @default.