Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024997306> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2024997306 endingPage "2032" @default.
- W2024997306 startingPage "2018" @default.
- W2024997306 abstract "The purpose of this paper is to compare a modified likelihood ratio test (Bartlett [2]) with the asymptotically UMP invariant test (Lehmann [8]) for testing homogeneity of variances of $k$ normal populations. We denote these tests by the $M$ test and $L$ test, respectively. The $M$ test has been investigated by many authors, whereas the $L$ test has not. Fitting beta type distributions, Mahalanobis [9] and Nayer [11] computed the percentage points of $M$, when the numbers of observations in each sample are the same. Nayer's results were confirmed by Bishop and Nair [3], using the exact null distribution of $M$ in a form of infinite series derived by Nair [10]. Asymptotic series expansion of the null distribution of $M$ was obtained by Hartley [6], using Mellin inversion formula, from which tables for percentage points were calculated by Thompson and Merrington [16], without assuming the equality of $k$-sample sizes. Later in a more general formulation, Box [4] derived the asymptotic series expansions of the null distributions of many test statistics, including that of the $M$ test, by using the characteristic function. Recently Pearson [12] obtained some approximate powers of the $M$ test both by fitting a gamma type distribution to the inverse of the modified likelihood ratio statistic and by using the Monte Carlo method. No attempt was made, however, to investigate the asymptotic non-null distribution of $M$. Sugiura [18] has shown the limiting distribution of $M$ in multivariate case under fixed alternative hypothesis to be normal. In Section 2 of this paper we shall show that the $L$ test is not unbiased, though the $M$ test is known to be unbiased (Pitman [14], Sugiura and Nagao [19]). In Section 3, we shall derive the limiting distributions of $L$ and $M$ under sequences of alternative hypothesis with arbitrary rate of convergence to the null hypothesis as sample sizes tend to infinity. Limiting distributions are characterized by $chi^2$, noncentral $chi^2$, and normal distributions, according to the rate of convergence of the sequence. In Section 4, asymptotic expansion of the null distribution of $L$ is given in terms of $chi^2$-distributions, and asymptotic formulas for the percentage points of $L$ and $M$ are obtained by using the general inverse expansion formula of Hill and Davis [7], with some numerical examples. In Section 5, asymptotic expansions of the non-null distributions of $L$ and $M$ under a fixed alternative hypothesis are derived in terms of normal distribution function and its derivatives, from which approximate powers are computed. It may be remarked that the limiting non-null distributions of $L$ and $M$ degenerate at the null hypothesis, by which asymptotic null distributions cannot be derived." @default.
- W2024997306 created "2016-06-24" @default.
- W2024997306 creator A5018293180 @default.
- W2024997306 creator A5022942150 @default.
- W2024997306 date "1969-12-01" @default.
- W2024997306 modified "2023-09-25" @default.
- W2024997306 title "On Bartlett's Test and Lehmann's Test for Homogeneity of Variances" @default.
- W2024997306 doi "https://doi.org/10.1214/aoms/1177697282" @default.
- W2024997306 hasPublicationYear "1969" @default.
- W2024997306 type Work @default.
- W2024997306 sameAs 2024997306 @default.
- W2024997306 citedByCount "18" @default.
- W2024997306 countsByYear W20249973062014 @default.
- W2024997306 countsByYear W20249973062019 @default.
- W2024997306 crossrefType "journal-article" @default.
- W2024997306 hasAuthorship W2024997306A5018293180 @default.
- W2024997306 hasAuthorship W2024997306A5022942150 @default.
- W2024997306 hasBestOaLocation W20249973061 @default.
- W2024997306 hasConcept C105795698 @default.
- W2024997306 hasConcept C114614502 @default.
- W2024997306 hasConcept C117661179 @default.
- W2024997306 hasConcept C120639 @default.
- W2024997306 hasConcept C142259097 @default.
- W2024997306 hasConcept C143724316 @default.
- W2024997306 hasConcept C151730666 @default.
- W2024997306 hasConcept C169857963 @default.
- W2024997306 hasConcept C185429906 @default.
- W2024997306 hasConcept C28826006 @default.
- W2024997306 hasConcept C33923547 @default.
- W2024997306 hasConcept C65778772 @default.
- W2024997306 hasConcept C82581908 @default.
- W2024997306 hasConcept C86803240 @default.
- W2024997306 hasConcept C87007009 @default.
- W2024997306 hasConceptScore W2024997306C105795698 @default.
- W2024997306 hasConceptScore W2024997306C114614502 @default.
- W2024997306 hasConceptScore W2024997306C117661179 @default.
- W2024997306 hasConceptScore W2024997306C120639 @default.
- W2024997306 hasConceptScore W2024997306C142259097 @default.
- W2024997306 hasConceptScore W2024997306C143724316 @default.
- W2024997306 hasConceptScore W2024997306C151730666 @default.
- W2024997306 hasConceptScore W2024997306C169857963 @default.
- W2024997306 hasConceptScore W2024997306C185429906 @default.
- W2024997306 hasConceptScore W2024997306C28826006 @default.
- W2024997306 hasConceptScore W2024997306C33923547 @default.
- W2024997306 hasConceptScore W2024997306C65778772 @default.
- W2024997306 hasConceptScore W2024997306C82581908 @default.
- W2024997306 hasConceptScore W2024997306C86803240 @default.
- W2024997306 hasConceptScore W2024997306C87007009 @default.
- W2024997306 hasIssue "6" @default.
- W2024997306 hasLocation W20249973061 @default.
- W2024997306 hasOpenAccess W2024997306 @default.
- W2024997306 hasPrimaryLocation W20249973061 @default.
- W2024997306 hasRelatedWork W117011466 @default.
- W2024997306 hasRelatedWork W1535800685 @default.
- W2024997306 hasRelatedWork W2018490949 @default.
- W2024997306 hasRelatedWork W2058039291 @default.
- W2024997306 hasRelatedWork W2074435627 @default.
- W2024997306 hasRelatedWork W2104645922 @default.
- W2024997306 hasRelatedWork W2185462963 @default.
- W2024997306 hasRelatedWork W3147334312 @default.
- W2024997306 hasRelatedWork W3149582010 @default.
- W2024997306 hasRelatedWork W4283818224 @default.
- W2024997306 hasVolume "40" @default.
- W2024997306 isParatext "false" @default.
- W2024997306 isRetracted "false" @default.
- W2024997306 magId "2024997306" @default.
- W2024997306 workType "article" @default.