Matches in SemOpenAlex for { <https://semopenalex.org/work/W2024998344> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2024998344 endingPage "801" @default.
- W2024998344 startingPage "801" @default.
- W2024998344 abstract "Article1 May 1963Bone Marrow Gas Tensions, Bone Marrow Blood Flow, and Erythropoiesis in ManJOSEPH L. GRANT, M.D., F.A.C.P., BARRY SMITH, M.D.JOSEPH L. GRANT, M.D., F.A.C.P.Search for more papers by this author, BARRY SMITH, M.D.Search for more papers by this authorAuthor, Article, and Disclosure Informationhttps://doi.org/10.7326/0003-4819-58-5-801 SectionsAboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinkedInRedditEmail ExcerptFor many years bone marrow anoxia was thought to stimulate erythropoiesis, but there is growing acceptance of the belief that a hormone, erythropoietin, provides the marrow with the immediate stimulus for blood production. In 1948, Berk, Burchenal, Wood, and Castle (1), and, in 1949, Schwartz and Stats (2) found that oxygenation of bone marrow was increased in states of marrow overactivity. Reissmann (1950) found increased hemopoiesis in the normal partner when 1 of a pair of parabiotic rats breathed a low oxygen gas mixture (3). Stohlman, Rath, and Rose (1954) found that in reverse patent ductus arteriosus the well-oxygenated sternal...References1. BERKBURCHENALWOODCASTLE LJHTWB: Oxygen saturation of sternal marrow blood with special reference to pathogenesis of polycythemia vera. Proc. Soc. Exp. Biol. Med. 69: 316, 1948. CrossrefMedlineGoogle Scholar2. SCHWARTZSTATS BMD: Oxygen saturation of sternal marrow blood in polycythemia vera. J. Clin. Invest. 28: 736, 1949. CrossrefMedlineGoogle Scholar3. REISSMANN KR: Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia. Blood 5: 372, 1950. CrossrefMedlineGoogle Scholar4. STOHLMANRATHROSE FCEJC: Evidence for a humoral regulation of erythropoiesis. Blood 9: 721, 1954. CrossrefMedlineGoogle Scholar5. JACOBSONMARKSGASTONGOLDWASSER LOEKEOE: Studies on erythropoiesis. XI. Reticulocyte response of transfusion-induced polycythemic mice to anemic plasma from nephrectomized rats exposed to low oxygen. Blood 14: 635, 1959. CrossrefMedlineGoogle Scholar6. GALLAGHERMCCARTHYLANGE NIJMRD: Observations on erythropoietic stimulating factor (ESF) in the plasma of uremic and nonuremic anemic patients. Ann. Intern. Med. 52: 1201, 1960. LinkGoogle Scholar7. KURATOWSKALEWARTOWSKIMICHALAK ZBE: Studies on the production of erythropoietin by isolated perfused organs. Blood 18: 527, 1961. CrossrefMedlineGoogle Scholar8. ROSSEWALDMANN WFTA: The role of the kidney in the erythropoietic response to hypoxia in parabiotic rats. Blood 19: 75, 1962. CrossrefMedlineGoogle Scholar9. WINTROBE MM: Clinical Hematology, 5th ed., Lea & Febiger, Philadelphia, 1961, pp. 50-51. Google Scholar10. RILEYPROEMMELFRANKE RLDDRE: Direct method for determination of O2 and CO2 tensions in blood. J. Biol. Chem. 1961: 621, 1945. CrossrefGoogle Scholar11. DILL JB: Handbook of Respiratory Data in Aviation, Office of Scientific Research and Development, Washington, D. C., 1944. Google Scholar12. CROSBYMUNNFURTH WHJIFW: Standardizing a method for clinical hemoglobinometry. US Armed Forces Med. J. 5: 693, 1954. MedlineGoogle Scholar13. MacLeod's Physiology in Modern Medicine, 9th ed., C. V. Mosby Company, St. Louis, 1941, p. 633. Google Scholar14. SCHOBINGER RA: Intra-Osseous Venography, Grune & Stratton, Inc., New York, 1960, Chap. 4. Google Scholar15. RODMANCLOSEPURCELL THPMK: The oxyhemoglobin dissociation curve in anemia. Ann. Intern. Med. 52: 295, 1960. LinkGoogle Scholar16. HUFFHENNESSYAUSTINGARCIAROBERTSLAWRENCE RLTGREJFBMJH: Plasma and red cell iron turnover in normal subjects and in patients having various hematopoietic disorders. J. Clin. Invest. 29: 1041, 1950. CrossrefMedlineGoogle Scholar This content is PDF only. To continue reading please click on the PDF icon. Author, Article, and Disclosure InformationAffiliations: White River Junction, VermontFrom the Medical and Research Services, Veterans Administration Hospital, White River Junction, Vermont, and the Dartmouth Medical School, Hanover, New Hampshire.Requests for reprints should be addressed to Joseph L. Grant, M.D., Veterans Administration Center,White River Junction, Vermont. PreviousarticleNextarticle Advertisement FiguresReferencesRelatedDetails Metrics Cited byPhysioxic Culture of Chondrogenic CellsSynoviocyte-Derived Extracellular Matrix and bFGF Speed Human Chondrocyte Proliferation While Maintaining Differentiation PotentialMeasuring and Modeling Oxygen Transport and Consumption in 3D Hydrogels Containing Chondrocytes and Stem Cells of Different Tissue OriginsMechanisms of skeletal fragility in diabetes mellitusSingle-Cell Profiles and Clinically Useful Properties of Human Mesenchymal Stem Cells of Adipose and Bone Marrow OriginRelevance of Oxygen Concentration in Stem Cell Culture for Regenerative MedicineThe Importance of Physioxia in Mesenchymal Stem Cell Chondrogenesis and the Mechanisms Controlling Its ResponseDefining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and HumansImmunomodulatory plasticity of mesenchymal stem cells: a potential key to successful solid organ transplantationEvaluation of the effects of ascorbic acid on metabolism of human mesenchymal stem cellsBiocalcite and Carbonic Acid ActivatorsStructured Methodology for Process Development in Scalable Stirred Tank Bioreactors PlatformsSensitivity of hematopoietic stem cells to mitochondrial dysfunction by SdhD gene deletionMicrocarrier Culture Systems for Stem Cell ManufacturingMineralization of bone-related SaOS-2 cells under physiological hypoxic conditionsDo hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome?Hypoxic Preconditioning of Mesenchymal Stromal Cells Induces Metabolic Changes, Enhances Survival, and Promotes Cell Retention In VivoThe Role of Hypoxia and Exploitation of the Hypoxic Environment in Hematologic MalignanciesConcise Review: Optimizing Expansion of Bone Marrow Mesenchymal Stem/Stromal Cells for Clinical ApplicationsHypoxia influences stem cell-like properties in multidrug resistant K562 leukemic cellsContinuous and Uninterrupted Oxygen Tension Influences the Colony Formation and Oxidative Metabolism of Human Mesenchymal Stem CellsEffects of Severe Hypoxia on Bone Marrow Mesenchymal Stem Cells Differentiation PotentialChanges in primary lymphoid organs with agingPositive regulation of osteoclastic differentiation by growth differentiation factor 15 upregulated in osteocytic cells under hypoxiaPotential for Osteogenic and Chondrogenic Differentiation of MSCOxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cellsThe metabolism of human mesenchymal stem cells during proliferation and differentiationThe Role of Hypoxia in Stem Cell Differentiation and TherapeuticsModulating Endochondral Ossification of Multipotent Stromal Cells for Bone RegenerationGrowth, Metabolism, and Growth Inhibitors of Mesenchymal Stem CellsOxygen tension is an important mediator of the transformation of osteoblasts to osteocytesHypoxia-mediated fenretinide (4-HPR) resistance in childhood acute lymphoblastic leukemia cellsLow oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cellsEffect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cellsSustained Stromal Stem Cell Self-Renewal and Osteoblastic Differentiation During AgingTirapazamine Cytotoxicity for Neuroblastoma Is p53 DependentCultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: Effects on in vitro and in vivo osteochondrogenesisAssessment of bone marrow blood flow using positron emission tomography: no relationship with bone marrow cellularityAssessment of bone marrow blood flow using positron emission tomography: no relationship with bone marrow cellularityThe influence of oxygen tension on the long-term growth in vitro of haematopoietic progenitor cells from human cord bloodGrowth of murine bone marrow adherent stromal cells in culture without hydrocortisone in a low oxygen environment 1 May 1963Volume 58, Issue 5Page: 801-809KeywordsBone marrowErythropoiesisHealth services researchHemoglobinHormonesHypoxiaOxygenPartial pressure of carbon dioxidePatent ductus arteriosusRivers ePublished: 1 December 2008 Issue Published: 1 May 1963 PDF downloadLoading ..." @default.
- W2024998344 created "2016-06-24" @default.
- W2024998344 creator A5028574643 @default.
- W2024998344 creator A5056070025 @default.
- W2024998344 date "1963-05-01" @default.
- W2024998344 modified "2023-10-14" @default.
- W2024998344 title "Bone Marrow Gas Tensions, Bone Marrow Blood Flow, and Erythropoiesis in Man" @default.
- W2024998344 cites W1509233722 @default.
- W2024998344 cites W1547389116 @default.
- W2024998344 cites W1555688036 @default.
- W2024998344 cites W170969310 @default.
- W2024998344 cites W177126860 @default.
- W2024998344 cites W1965804126 @default.
- W2024998344 cites W2137130769 @default.
- W2024998344 cites W2318170450 @default.
- W2024998344 cites W2399450984 @default.
- W2024998344 cites W2413031567 @default.
- W2024998344 cites W250431338 @default.
- W2024998344 doi "https://doi.org/10.7326/0003-4819-58-5-801" @default.
- W2024998344 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/13949863" @default.
- W2024998344 hasPublicationYear "1963" @default.
- W2024998344 type Work @default.
- W2024998344 sameAs 2024998344 @default.
- W2024998344 citedByCount "49" @default.
- W2024998344 countsByYear W20249983442012 @default.
- W2024998344 countsByYear W20249983442013 @default.
- W2024998344 countsByYear W20249983442014 @default.
- W2024998344 countsByYear W20249983442015 @default.
- W2024998344 countsByYear W20249983442016 @default.
- W2024998344 countsByYear W20249983442017 @default.
- W2024998344 countsByYear W20249983442018 @default.
- W2024998344 countsByYear W20249983442019 @default.
- W2024998344 countsByYear W20249983442020 @default.
- W2024998344 countsByYear W20249983442021 @default.
- W2024998344 countsByYear W20249983442022 @default.
- W2024998344 crossrefType "journal-article" @default.
- W2024998344 hasAuthorship W2024998344A5028574643 @default.
- W2024998344 hasAuthorship W2024998344A5056070025 @default.
- W2024998344 hasConcept C126322002 @default.
- W2024998344 hasConcept C142724271 @default.
- W2024998344 hasConcept C158846371 @default.
- W2024998344 hasConcept C2778248108 @default.
- W2024998344 hasConcept C2779703530 @default.
- W2024998344 hasConcept C2780007613 @default.
- W2024998344 hasConcept C71924100 @default.
- W2024998344 hasConceptScore W2024998344C126322002 @default.
- W2024998344 hasConceptScore W2024998344C142724271 @default.
- W2024998344 hasConceptScore W2024998344C158846371 @default.
- W2024998344 hasConceptScore W2024998344C2778248108 @default.
- W2024998344 hasConceptScore W2024998344C2779703530 @default.
- W2024998344 hasConceptScore W2024998344C2780007613 @default.
- W2024998344 hasConceptScore W2024998344C71924100 @default.
- W2024998344 hasIssue "5" @default.
- W2024998344 hasLocation W20249983441 @default.
- W2024998344 hasLocation W20249983442 @default.
- W2024998344 hasOpenAccess W2024998344 @default.
- W2024998344 hasPrimaryLocation W20249983441 @default.
- W2024998344 hasRelatedWork W1983275366 @default.
- W2024998344 hasRelatedWork W2008338524 @default.
- W2024998344 hasRelatedWork W2023305576 @default.
- W2024998344 hasRelatedWork W2073895217 @default.
- W2024998344 hasRelatedWork W2133851432 @default.
- W2024998344 hasRelatedWork W2139653495 @default.
- W2024998344 hasRelatedWork W2248467116 @default.
- W2024998344 hasRelatedWork W2328378343 @default.
- W2024998344 hasRelatedWork W2410782353 @default.
- W2024998344 hasRelatedWork W2765670722 @default.
- W2024998344 hasVolume "58" @default.
- W2024998344 isParatext "false" @default.
- W2024998344 isRetracted "false" @default.
- W2024998344 magId "2024998344" @default.
- W2024998344 workType "article" @default.