Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025002323> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2025002323 endingPage "2700" @default.
- W2025002323 startingPage "2691" @default.
- W2025002323 abstract "Abstract An empirical screening level approach was developed to assess the probability of toxicity to benthic organisms associated with contaminated sediment exposure. The study was based on simple logistic regression models (LRMs) of matching sediment chemistry and toxicity data retrieved from a large database of field‐collected sediment samples contaminated with multiple chemicals. Three decisions were made to simplify the application of LRMs to sediment samples contaminated with multiple chemicals. First, percent mortality information associated with each sediment sample was condensed into a dichotomous response (i.e., toxic or nontoxic). Second, each LRM assumed that toxicity was attributable to a single contaminant. Third, individual contaminants present at low concentrations were excluded from toxic sediment samples. Based on an analysis of the National Sediment Inventory database, the LRM approach classified 55% of nontoxic sediments as toxic (i.e., false‐positives). Because this approach has been used to assess the probability of benthic toxicity as reported by the U.S. Environmental Protection Agency (U.S. EPA), the resultant estimates of potential toxicity convey a misleading impression of the increased hazard that sediments pose to the health of aquatic organisms at many sites in the United States. This could result in important resources needlessly being diverted from truly contaminated sites to evaluate and possibly remediate sediments at uncontaminated sites." @default.
- W2025002323 created "2016-06-24" @default.
- W2025002323 creator A5023589777 @default.
- W2025002323 creator A5044145087 @default.
- W2025002323 creator A5056720138 @default.
- W2025002323 creator A5070530419 @default.
- W2025002323 date "2005-10-01" @default.
- W2025002323 modified "2023-10-11" @default.
- W2025002323 title "AN EVALUATION OF LOGISTIC REGRESSION MODELS FOR PREDICTING AMPHIPOD TOXICITY FROM SEDIMENT CHEMISTRY" @default.
- W2025002323 cites W2007993189 @default.
- W2025002323 cites W2015198283 @default.
- W2025002323 cites W2027703923 @default.
- W2025002323 cites W2038009942 @default.
- W2025002323 cites W2082612656 @default.
- W2025002323 cites W2100452690 @default.
- W2025002323 cites W2140691217 @default.
- W2025002323 cites W2151491007 @default.
- W2025002323 doi "https://doi.org/10.1897/04-129r.1" @default.
- W2025002323 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16268172" @default.
- W2025002323 hasPublicationYear "2005" @default.
- W2025002323 type Work @default.
- W2025002323 sameAs 2025002323 @default.
- W2025002323 citedByCount "5" @default.
- W2025002323 crossrefType "journal-article" @default.
- W2025002323 hasAuthorship W2025002323A5023589777 @default.
- W2025002323 hasAuthorship W2025002323A5044145087 @default.
- W2025002323 hasAuthorship W2025002323A5056720138 @default.
- W2025002323 hasAuthorship W2025002323A5070530419 @default.
- W2025002323 hasConcept C107872376 @default.
- W2025002323 hasConcept C112570922 @default.
- W2025002323 hasConcept C151730666 @default.
- W2025002323 hasConcept C178790620 @default.
- W2025002323 hasConcept C185592680 @default.
- W2025002323 hasConcept C18903297 @default.
- W2025002323 hasConcept C2816523 @default.
- W2025002323 hasConcept C29730261 @default.
- W2025002323 hasConcept C39432304 @default.
- W2025002323 hasConcept C83042747 @default.
- W2025002323 hasConcept C86803240 @default.
- W2025002323 hasConceptScore W2025002323C107872376 @default.
- W2025002323 hasConceptScore W2025002323C112570922 @default.
- W2025002323 hasConceptScore W2025002323C151730666 @default.
- W2025002323 hasConceptScore W2025002323C178790620 @default.
- W2025002323 hasConceptScore W2025002323C185592680 @default.
- W2025002323 hasConceptScore W2025002323C18903297 @default.
- W2025002323 hasConceptScore W2025002323C2816523 @default.
- W2025002323 hasConceptScore W2025002323C29730261 @default.
- W2025002323 hasConceptScore W2025002323C39432304 @default.
- W2025002323 hasConceptScore W2025002323C83042747 @default.
- W2025002323 hasConceptScore W2025002323C86803240 @default.
- W2025002323 hasIssue "10" @default.
- W2025002323 hasLocation W20250023231 @default.
- W2025002323 hasLocation W20250023232 @default.
- W2025002323 hasOpenAccess W2025002323 @default.
- W2025002323 hasPrimaryLocation W20250023231 @default.
- W2025002323 hasRelatedWork W1879292667 @default.
- W2025002323 hasRelatedWork W2150776934 @default.
- W2025002323 hasRelatedWork W2300967019 @default.
- W2025002323 hasRelatedWork W2326427354 @default.
- W2025002323 hasRelatedWork W2355749553 @default.
- W2025002323 hasRelatedWork W3145102588 @default.
- W2025002323 hasRelatedWork W3150697957 @default.
- W2025002323 hasRelatedWork W4232417921 @default.
- W2025002323 hasRelatedWork W4246525302 @default.
- W2025002323 hasRelatedWork W4254407731 @default.
- W2025002323 hasVolume "24" @default.
- W2025002323 isParatext "false" @default.
- W2025002323 isRetracted "false" @default.
- W2025002323 magId "2025002323" @default.
- W2025002323 workType "article" @default.