Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025032336> ?p ?o ?g. }
- W2025032336 endingPage "43" @default.
- W2025032336 startingPage "26" @default.
- W2025032336 abstract "MRI templates and digital atlases are needed for automated and reproducible quantitative analysis of non-human primate PET studies. Segmenting brain images via multiple atlases outperforms single-atlas labelling in humans. We present a set of atlases manually delineated on brain MRI scans of the monkey Macaca fascicularis. We use this multi-atlas dataset to evaluate two automated methods in terms of accuracy, robustness and reliability in segmenting brain structures on MRI and extracting regional PET measures.Twelve individual Macaca fascicularis high-resolution 3DT1 MR images were acquired. Four individual atlases were created by manually drawing 42 anatomical structures, including cortical and sub-cortical structures, white matter regions, and ventricles. To create the MRI template, we first chose one MRI to define a reference space, and then performed a two-step iterative procedure: affine registration of individual MRIs to the reference MRI, followed by averaging of the twelve resampled MRIs. Automated segmentation in native space was obtained in two ways: 1) Maximum probability atlases were created by decision fusion of two to four individual atlases in the reference space, and transformation back into the individual native space (MAXPROB)(.) 2) One to four individual atlases were registered directly to the individual native space, and combined by decision fusion (PROPAG). Accuracy was evaluated by computing the Dice similarity index and the volume difference. The robustness and reproducibility of PET regional measurements obtained via automated segmentation was evaluated on four co-registered MRI/PET datasets, which included test-retest data.Dice indices were always over 0.7 and reached maximal values of 0.9 for PROPAG with all four individual atlases. There was no significant mean volume bias. The standard deviation of the bias decreased significantly when increasing the number of individual atlases. MAXPROB performed better when increasing the number of atlases used. When all four atlases were used for the MAXPROB creation, the accuracy of morphometric segmentation approached that of the PROPAG method. PET measures extracted either via automatic methods or via the manually defined regions were strongly correlated, with no significant regional differences between methods. Intra-class correlation coefficients for test-retest data were over 0.87.Compared to single atlas extractions, multi-atlas methods improve the accuracy of region definition. They also perform comparably to manually defined regions for PET quantification. Multiple atlases of Macaca fascicularis brains are now available and allow reproducible and simplified analyses." @default.
- W2025032336 created "2016-06-24" @default.
- W2025032336 creator A5002205525 @default.
- W2025032336 creator A5021466238 @default.
- W2025032336 creator A5024230337 @default.
- W2025032336 creator A5028037477 @default.
- W2025032336 creator A5059656423 @default.
- W2025032336 creator A5062730744 @default.
- W2025032336 creator A5071446281 @default.
- W2025032336 date "2013-08-01" @default.
- W2025032336 modified "2023-10-17" @default.
- W2025032336 title "A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction" @default.
- W2025032336 cites W1963952390 @default.
- W2025032336 cites W1969782621 @default.
- W2025032336 cites W1987323833 @default.
- W2025032336 cites W1991004967 @default.
- W2025032336 cites W1991456242 @default.
- W2025032336 cites W1991640961 @default.
- W2025032336 cites W2000716207 @default.
- W2025032336 cites W2002782093 @default.
- W2025032336 cites W2009265643 @default.
- W2025032336 cites W2018662705 @default.
- W2025032336 cites W2020281498 @default.
- W2025032336 cites W2021955937 @default.
- W2025032336 cites W2032377318 @default.
- W2025032336 cites W2036659637 @default.
- W2025032336 cites W2038018468 @default.
- W2025032336 cites W2040937292 @default.
- W2025032336 cites W2043069334 @default.
- W2025032336 cites W2044074582 @default.
- W2025032336 cites W2047556230 @default.
- W2025032336 cites W2049247209 @default.
- W2025032336 cites W2049546272 @default.
- W2025032336 cites W2055069465 @default.
- W2025032336 cites W2055633013 @default.
- W2025032336 cites W2056516077 @default.
- W2025032336 cites W2063237661 @default.
- W2025032336 cites W2070134745 @default.
- W2025032336 cites W2070273811 @default.
- W2025032336 cites W2071881327 @default.
- W2025032336 cites W2072765350 @default.
- W2025032336 cites W2078865034 @default.
- W2025032336 cites W2082015847 @default.
- W2025032336 cites W2086809121 @default.
- W2025032336 cites W2105612509 @default.
- W2025032336 cites W2113889563 @default.
- W2025032336 cites W2116649573 @default.
- W2025032336 cites W2123197173 @default.
- W2025032336 cites W2129965408 @default.
- W2025032336 cites W2135535334 @default.
- W2025032336 cites W2141796362 @default.
- W2025032336 cites W2157284550 @default.
- W2025032336 cites W2325840480 @default.
- W2025032336 doi "https://doi.org/10.1016/j.neuroimage.2013.03.029" @default.
- W2025032336 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23537938" @default.
- W2025032336 hasPublicationYear "2013" @default.
- W2025032336 type Work @default.
- W2025032336 sameAs 2025032336 @default.
- W2025032336 citedByCount "42" @default.
- W2025032336 countsByYear W20250323362014 @default.
- W2025032336 countsByYear W20250323362015 @default.
- W2025032336 countsByYear W20250323362016 @default.
- W2025032336 countsByYear W20250323362017 @default.
- W2025032336 countsByYear W20250323362018 @default.
- W2025032336 countsByYear W20250323362019 @default.
- W2025032336 countsByYear W20250323362020 @default.
- W2025032336 countsByYear W20250323362021 @default.
- W2025032336 countsByYear W20250323362022 @default.
- W2025032336 countsByYear W20250323362023 @default.
- W2025032336 crossrefType "journal-article" @default.
- W2025032336 hasAuthorship W2025032336A5002205525 @default.
- W2025032336 hasAuthorship W2025032336A5021466238 @default.
- W2025032336 hasAuthorship W2025032336A5024230337 @default.
- W2025032336 hasAuthorship W2025032336A5028037477 @default.
- W2025032336 hasAuthorship W2025032336A5059656423 @default.
- W2025032336 hasAuthorship W2025032336A5062730744 @default.
- W2025032336 hasAuthorship W2025032336A5071446281 @default.
- W2025032336 hasConcept C104317684 @default.
- W2025032336 hasConcept C105702510 @default.
- W2025032336 hasConcept C124504099 @default.
- W2025032336 hasConcept C153180895 @default.
- W2025032336 hasConcept C154945302 @default.
- W2025032336 hasConcept C163892561 @default.
- W2025032336 hasConcept C202444582 @default.
- W2025032336 hasConcept C2776673561 @default.
- W2025032336 hasConcept C2780972224 @default.
- W2025032336 hasConcept C31972630 @default.
- W2025032336 hasConcept C33923547 @default.
- W2025032336 hasConcept C41008148 @default.
- W2025032336 hasConcept C55493867 @default.
- W2025032336 hasConcept C63479239 @default.
- W2025032336 hasConcept C71924100 @default.
- W2025032336 hasConcept C86803240 @default.
- W2025032336 hasConcept C89600930 @default.
- W2025032336 hasConcept C92757383 @default.
- W2025032336 hasConceptScore W2025032336C104317684 @default.
- W2025032336 hasConceptScore W2025032336C105702510 @default.
- W2025032336 hasConceptScore W2025032336C124504099 @default.