Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025096743> ?p ?o ?g. }
- W2025096743 endingPage "144" @default.
- W2025096743 startingPage "133" @default.
- W2025096743 abstract "The Highway Safety Manual (HSM) recommends using the empirical Bayes (EB) method with locally derived calibration factors to predict an agency’s safety performance. However, the data needs for deriving these local calibration factors are significant, requiring very detailed roadway characteristics information. Many of the data variables identified in the HSM are currently unavailable in the states’ databases. Moreover, the process of collecting and maintaining all the HSM data variables is cost-prohibitive. Prioritization of the variables based on their impact on crash predictions would, therefore, help to identify influential variables for which data could be collected and maintained for continued updates. This study aims to determine the impact of each independent variable identified in the HSM on crash predictions. A relatively recent data mining approach called boosted regression trees (BRT) is used to investigate the association between the variables and crash predictions. The BRT method can effectively handle different types of predictor variables, identify very complex and non-linear association among variables, and compute variable importance. Five years of crash data from 2008 to 2012 on two urban and suburban facility types, two-lane undivided arterials and four-lane divided arterials, were analyzed for estimating the influence of variables on crash predictions. Variables were found to exhibit non-linear and sometimes complex relationship to predicted crash counts. In addition, only a few variables were found to explain most of the variation in the crash data." @default.
- W2025096743 created "2016-06-24" @default.
- W2025096743 creator A5001769956 @default.
- W2025096743 creator A5036836776 @default.
- W2025096743 creator A5083013822 @default.
- W2025096743 date "2015-06-01" @default.
- W2025096743 modified "2023-10-06" @default.
- W2025096743 title "Prioritizing Highway Safety Manual’s crash prediction variables using boosted regression trees" @default.
- W2025096743 cites W1678356000 @default.
- W2025096743 cites W1967737916 @default.
- W2025096743 cites W1983290796 @default.
- W2025096743 cites W1987101758 @default.
- W2025096743 cites W1993778792 @default.
- W2025096743 cites W1994378967 @default.
- W2025096743 cites W2013324642 @default.
- W2025096743 cites W2013845817 @default.
- W2025096743 cites W2014488833 @default.
- W2025096743 cites W2014546554 @default.
- W2025096743 cites W2019706907 @default.
- W2025096743 cites W2025916305 @default.
- W2025096743 cites W2038083916 @default.
- W2025096743 cites W2041517440 @default.
- W2025096743 cites W2042697028 @default.
- W2025096743 cites W2052605829 @default.
- W2025096743 cites W2053409354 @default.
- W2025096743 cites W2057002275 @default.
- W2025096743 cites W2066682742 @default.
- W2025096743 cites W2070493638 @default.
- W2025096743 cites W2072180807 @default.
- W2025096743 cites W2073793937 @default.
- W2025096743 cites W2075125986 @default.
- W2025096743 cites W2085349079 @default.
- W2025096743 cites W2090563475 @default.
- W2025096743 cites W2090977144 @default.
- W2025096743 cites W2101391093 @default.
- W2025096743 cites W2125223451 @default.
- W2025096743 cites W2125478096 @default.
- W2025096743 cites W2127991156 @default.
- W2025096743 cites W2135695572 @default.
- W2025096743 cites W2140908056 @default.
- W2025096743 cites W2163908274 @default.
- W2025096743 cites W2177299793 @default.
- W2025096743 cites W3099723433 @default.
- W2025096743 doi "https://doi.org/10.1016/j.aap.2015.03.011" @default.
- W2025096743 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25823903" @default.
- W2025096743 hasPublicationYear "2015" @default.
- W2025096743 type Work @default.
- W2025096743 sameAs 2025096743 @default.
- W2025096743 citedByCount "66" @default.
- W2025096743 countsByYear W20250967432015 @default.
- W2025096743 countsByYear W20250967432016 @default.
- W2025096743 countsByYear W20250967432017 @default.
- W2025096743 countsByYear W20250967432018 @default.
- W2025096743 countsByYear W20250967432019 @default.
- W2025096743 countsByYear W20250967432020 @default.
- W2025096743 countsByYear W20250967432021 @default.
- W2025096743 countsByYear W20250967432022 @default.
- W2025096743 countsByYear W20250967432023 @default.
- W2025096743 crossrefType "journal-article" @default.
- W2025096743 hasAuthorship W2025096743A5001769956 @default.
- W2025096743 hasAuthorship W2025096743A5036836776 @default.
- W2025096743 hasAuthorship W2025096743A5083013822 @default.
- W2025096743 hasConcept C105795698 @default.
- W2025096743 hasConcept C107673813 @default.
- W2025096743 hasConcept C127413603 @default.
- W2025096743 hasConcept C134306372 @default.
- W2025096743 hasConcept C152877465 @default.
- W2025096743 hasConcept C165838908 @default.
- W2025096743 hasConcept C182365436 @default.
- W2025096743 hasConcept C183469790 @default.
- W2025096743 hasConcept C199360897 @default.
- W2025096743 hasConcept C207201462 @default.
- W2025096743 hasConcept C22212356 @default.
- W2025096743 hasConcept C27574286 @default.
- W2025096743 hasConcept C3017944768 @default.
- W2025096743 hasConcept C33923547 @default.
- W2025096743 hasConcept C41008148 @default.
- W2025096743 hasConcept C48921125 @default.
- W2025096743 hasConcept C71924100 @default.
- W2025096743 hasConcept C99454951 @default.
- W2025096743 hasConceptScore W2025096743C105795698 @default.
- W2025096743 hasConceptScore W2025096743C107673813 @default.
- W2025096743 hasConceptScore W2025096743C127413603 @default.
- W2025096743 hasConceptScore W2025096743C134306372 @default.
- W2025096743 hasConceptScore W2025096743C152877465 @default.
- W2025096743 hasConceptScore W2025096743C165838908 @default.
- W2025096743 hasConceptScore W2025096743C182365436 @default.
- W2025096743 hasConceptScore W2025096743C183469790 @default.
- W2025096743 hasConceptScore W2025096743C199360897 @default.
- W2025096743 hasConceptScore W2025096743C207201462 @default.
- W2025096743 hasConceptScore W2025096743C22212356 @default.
- W2025096743 hasConceptScore W2025096743C27574286 @default.
- W2025096743 hasConceptScore W2025096743C3017944768 @default.
- W2025096743 hasConceptScore W2025096743C33923547 @default.
- W2025096743 hasConceptScore W2025096743C41008148 @default.
- W2025096743 hasConceptScore W2025096743C48921125 @default.
- W2025096743 hasConceptScore W2025096743C71924100 @default.
- W2025096743 hasConceptScore W2025096743C99454951 @default.