Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025103722> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2025103722 endingPage "1276" @default.
- W2025103722 startingPage "1265" @default.
- W2025103722 abstract "For clustering biomedical documents, we can consider three different types of information: the local-content (LC) information from documents, the global-content (GC) information from the whole MEDLINE collections, and the medical subject heading (MeSH)-semantic (MS) information. Previous methods for clustering biomedical documents are not necessarily effective for integrating different types of information, by which only one or two types of information have been used. Recently, the performance of MEDLINE document clustering has been enhanced by linearly combining both the LC and MS information. However, the simple linear combination could be ineffective because of the limitation of the representation space for combining different types of information (similarities) with different reliability. To overcome the limitation, we propose a new semisupervised spectral clustering method, i.e., SSNCut, for clustering over the LC similarities, with two types of constraints: must-link (ML) constraints on document pairs with high MS (or GC) similarities and cannot-link (CL) constraints on those with low similarities. We empirically demonstrate the performance of SSNCut on MEDLINE document clustering, by using 100 data sets of MEDLINE records. Experimental results show that SSNCut outperformed a linear combination method and several well-known semisupervised clustering methods, being statistically significant. Furthermore, the performance of SSNCut with constraints from both MS and GC similarities outperformed that from only one type of similarities. Another interesting finding was that ML constraints more effectively worked than CL constraints, since CL constraints include around 10% incorrect ones, whereas this number was only 1% for ML constraints." @default.
- W2025103722 created "2016-06-24" @default.
- W2025103722 creator A5044432126 @default.
- W2025103722 creator A5045866167 @default.
- W2025103722 creator A5059001924 @default.
- W2025103722 creator A5062026103 @default.
- W2025103722 creator A5074862307 @default.
- W2025103722 date "2013-08-01" @default.
- W2025103722 modified "2023-09-27" @default.
- W2025103722 title "Efficient Semisupervised MEDLINE Document Clustering With MeSH-Semantic and Global-Content Constraints" @default.
- W2025103722 cites W1479807131 @default.
- W2025103722 cites W1488751160 @default.
- W2025103722 cites W1835571316 @default.
- W2025103722 cites W1981081578 @default.
- W2025103722 cites W1985897329 @default.
- W2025103722 cites W2061172803 @default.
- W2025103722 cites W2106987717 @default.
- W2025103722 cites W2120413242 @default.
- W2025103722 cites W2121947440 @default.
- W2025103722 cites W2125964067 @default.
- W2025103722 cites W2127603354 @default.
- W2025103722 cites W2136127419 @default.
- W2025103722 cites W2136930489 @default.
- W2025103722 cites W2137820941 @default.
- W2025103722 cites W2139956879 @default.
- W2025103722 cites W2144181601 @default.
- W2025103722 cites W2144317357 @default.
- W2025103722 cites W2153384970 @default.
- W2025103722 cites W2160484893 @default.
- W2025103722 cites W2162972849 @default.
- W2025103722 cites W2168022112 @default.
- W2025103722 cites W2610360795 @default.
- W2025103722 cites W4231041617 @default.
- W2025103722 cites W4253901579 @default.
- W2025103722 doi "https://doi.org/10.1109/tsmcb.2012.2227998" @default.
- W2025103722 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26502435" @default.
- W2025103722 hasPublicationYear "2013" @default.
- W2025103722 type Work @default.
- W2025103722 sameAs 2025103722 @default.
- W2025103722 citedByCount "43" @default.
- W2025103722 countsByYear W20251037222014 @default.
- W2025103722 countsByYear W20251037222015 @default.
- W2025103722 countsByYear W20251037222016 @default.
- W2025103722 countsByYear W20251037222017 @default.
- W2025103722 countsByYear W20251037222018 @default.
- W2025103722 countsByYear W20251037222019 @default.
- W2025103722 countsByYear W20251037222020 @default.
- W2025103722 countsByYear W20251037222021 @default.
- W2025103722 countsByYear W20251037222022 @default.
- W2025103722 countsByYear W20251037222023 @default.
- W2025103722 crossrefType "journal-article" @default.
- W2025103722 hasAuthorship W2025103722A5044432126 @default.
- W2025103722 hasAuthorship W2025103722A5045866167 @default.
- W2025103722 hasAuthorship W2025103722A5059001924 @default.
- W2025103722 hasAuthorship W2025103722A5062026103 @default.
- W2025103722 hasAuthorship W2025103722A5074862307 @default.
- W2025103722 hasConcept C124101348 @default.
- W2025103722 hasConcept C154945302 @default.
- W2025103722 hasConcept C17744445 @default.
- W2025103722 hasConcept C177937566 @default.
- W2025103722 hasConcept C184337299 @default.
- W2025103722 hasConcept C199360897 @default.
- W2025103722 hasConcept C199539241 @default.
- W2025103722 hasConcept C23123220 @default.
- W2025103722 hasConcept C2779473830 @default.
- W2025103722 hasConcept C41008148 @default.
- W2025103722 hasConcept C73555534 @default.
- W2025103722 hasConceptScore W2025103722C124101348 @default.
- W2025103722 hasConceptScore W2025103722C154945302 @default.
- W2025103722 hasConceptScore W2025103722C17744445 @default.
- W2025103722 hasConceptScore W2025103722C177937566 @default.
- W2025103722 hasConceptScore W2025103722C184337299 @default.
- W2025103722 hasConceptScore W2025103722C199360897 @default.
- W2025103722 hasConceptScore W2025103722C199539241 @default.
- W2025103722 hasConceptScore W2025103722C23123220 @default.
- W2025103722 hasConceptScore W2025103722C2779473830 @default.
- W2025103722 hasConceptScore W2025103722C41008148 @default.
- W2025103722 hasConceptScore W2025103722C73555534 @default.
- W2025103722 hasIssue "4" @default.
- W2025103722 hasLocation W20251037221 @default.
- W2025103722 hasLocation W20251037222 @default.
- W2025103722 hasOpenAccess W2025103722 @default.
- W2025103722 hasPrimaryLocation W20251037221 @default.
- W2025103722 hasRelatedWork W1504491975 @default.
- W2025103722 hasRelatedWork W2086064646 @default.
- W2025103722 hasRelatedWork W2121877219 @default.
- W2025103722 hasRelatedWork W2184440854 @default.
- W2025103722 hasRelatedWork W2184609164 @default.
- W2025103722 hasRelatedWork W2282393731 @default.
- W2025103722 hasRelatedWork W2941132005 @default.
- W2025103722 hasRelatedWork W2963971601 @default.
- W2025103722 hasRelatedWork W4296998096 @default.
- W2025103722 hasRelatedWork W4301704110 @default.
- W2025103722 hasVolume "43" @default.
- W2025103722 isParatext "false" @default.
- W2025103722 isRetracted "false" @default.
- W2025103722 magId "2025103722" @default.
- W2025103722 workType "article" @default.