Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025171808> ?p ?o ?g. }
- W2025171808 abstract "Stream surfaces and streamlines are two popular methods for visualizing three-dimensional flow fields. While several parallel streamline computation algorithms exist, relatively little research has been done to parallelize stream surface generation. This is because load-balanced parallel stream surface computation is nontrivial, due to the strong dependency in computing the positions of the particles forming the stream surface front. In this paper, we present a new algorithm that computes stream surfaces efficiently. In our algorithm, seeding curves are divided into segments, which are then assigned to the processes. Each process is responsible for integrating the segments assigned to it. To ensure a balanced computational workload, work stealing and dynamic refinement of seeding curve segments are employed to improve the overall performance. We demonstrate the effectiveness of our parallel stream surface algorithm using several large scale flow field data sets, and show the performance and scalability on HPC systems." @default.
- W2025171808 created "2016-06-24" @default.
- W2025171808 creator A5006935856 @default.
- W2025171808 creator A5057612088 @default.
- W2025171808 creator A5065630217 @default.
- W2025171808 date "2014-11-01" @default.
- W2025171808 modified "2023-10-11" @default.
- W2025171808 title "Scalable Computation of Stream Surfaces on Large Scale Vector Fields" @default.
- W2025171808 cites W1500375250 @default.
- W2025171808 cites W1994075001 @default.
- W2025171808 cites W2012870353 @default.
- W2025171808 cites W2016559894 @default.
- W2025171808 cites W2024086559 @default.
- W2025171808 cites W2028445740 @default.
- W2025171808 cites W2030218879 @default.
- W2025171808 cites W2030466040 @default.
- W2025171808 cites W2030907924 @default.
- W2025171808 cites W2046714461 @default.
- W2025171808 cites W2055193574 @default.
- W2025171808 cites W2093613505 @default.
- W2025171808 cites W2110645766 @default.
- W2025171808 cites W2112066591 @default.
- W2025171808 cites W2114763871 @default.
- W2025171808 cites W2125082736 @default.
- W2025171808 cites W2132029508 @default.
- W2025171808 cites W2146381930 @default.
- W2025171808 cites W2154393589 @default.
- W2025171808 cites W2173213060 @default.
- W2025171808 cites W2296352387 @default.
- W2025171808 cites W3148873671 @default.
- W2025171808 cites W4236083265 @default.
- W2025171808 cites W4240316577 @default.
- W2025171808 doi "https://doi.org/10.1109/sc.2014.87" @default.
- W2025171808 hasPublicationYear "2014" @default.
- W2025171808 type Work @default.
- W2025171808 sameAs 2025171808 @default.
- W2025171808 citedByCount "13" @default.
- W2025171808 countsByYear W20251718082016 @default.
- W2025171808 countsByYear W20251718082017 @default.
- W2025171808 countsByYear W20251718082018 @default.
- W2025171808 countsByYear W20251718082019 @default.
- W2025171808 countsByYear W20251718082023 @default.
- W2025171808 crossrefType "proceedings-article" @default.
- W2025171808 hasAuthorship W2025171808A5006935856 @default.
- W2025171808 hasAuthorship W2025171808A5057612088 @default.
- W2025171808 hasAuthorship W2025171808A5065630217 @default.
- W2025171808 hasBestOaLocation W20251718082 @default.
- W2025171808 hasConcept C107027933 @default.
- W2025171808 hasConcept C111919701 @default.
- W2025171808 hasConcept C11413529 @default.
- W2025171808 hasConcept C121332964 @default.
- W2025171808 hasConcept C173608175 @default.
- W2025171808 hasConcept C2524010 @default.
- W2025171808 hasConcept C2776799497 @default.
- W2025171808 hasConcept C2778476105 @default.
- W2025171808 hasConcept C2778755073 @default.
- W2025171808 hasConcept C33923547 @default.
- W2025171808 hasConcept C38349280 @default.
- W2025171808 hasConcept C41008148 @default.
- W2025171808 hasConcept C45374587 @default.
- W2025171808 hasConcept C459310 @default.
- W2025171808 hasConcept C48044578 @default.
- W2025171808 hasConcept C60439489 @default.
- W2025171808 hasConcept C62520636 @default.
- W2025171808 hasConcept C77088390 @default.
- W2025171808 hasConcept C97355855 @default.
- W2025171808 hasConceptScore W2025171808C107027933 @default.
- W2025171808 hasConceptScore W2025171808C111919701 @default.
- W2025171808 hasConceptScore W2025171808C11413529 @default.
- W2025171808 hasConceptScore W2025171808C121332964 @default.
- W2025171808 hasConceptScore W2025171808C173608175 @default.
- W2025171808 hasConceptScore W2025171808C2524010 @default.
- W2025171808 hasConceptScore W2025171808C2776799497 @default.
- W2025171808 hasConceptScore W2025171808C2778476105 @default.
- W2025171808 hasConceptScore W2025171808C2778755073 @default.
- W2025171808 hasConceptScore W2025171808C33923547 @default.
- W2025171808 hasConceptScore W2025171808C38349280 @default.
- W2025171808 hasConceptScore W2025171808C41008148 @default.
- W2025171808 hasConceptScore W2025171808C45374587 @default.
- W2025171808 hasConceptScore W2025171808C459310 @default.
- W2025171808 hasConceptScore W2025171808C48044578 @default.
- W2025171808 hasConceptScore W2025171808C60439489 @default.
- W2025171808 hasConceptScore W2025171808C62520636 @default.
- W2025171808 hasConceptScore W2025171808C77088390 @default.
- W2025171808 hasConceptScore W2025171808C97355855 @default.
- W2025171808 hasLocation W20251718081 @default.
- W2025171808 hasLocation W20251718082 @default.
- W2025171808 hasOpenAccess W2025171808 @default.
- W2025171808 hasPrimaryLocation W20251718081 @default.
- W2025171808 hasRelatedWork W1680795328 @default.
- W2025171808 hasRelatedWork W1967194564 @default.
- W2025171808 hasRelatedWork W2023656250 @default.
- W2025171808 hasRelatedWork W2034723363 @default.
- W2025171808 hasRelatedWork W2052498649 @default.
- W2025171808 hasRelatedWork W2085881860 @default.
- W2025171808 hasRelatedWork W2319269581 @default.
- W2025171808 hasRelatedWork W2753966455 @default.
- W2025171808 hasRelatedWork W2916015609 @default.
- W2025171808 hasRelatedWork W3175549310 @default.
- W2025171808 isParatext "false" @default.