Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025295229> ?p ?o ?g. }
- W2025295229 endingPage "720" @default.
- W2025295229 startingPage "704" @default.
- W2025295229 abstract "This research developed a simulation-aided nonlinear programming model (SNPM). This model incorporated the consideration of pollutant dispersion modeling, and the management of coal blending and the related human health risks within a general modeling framework. In SNPM, the simulation effort (i.e., California puff [CALPUFF]) was used to forecast the fate of air pollutants for quantifying the health risk under various conditions, while the optimization studies were to identify the optimal coal blending strategies from a number of alternatives. To solve the model, a surrogate-based indirect search approach was proposed, where the support vector regression (SVR) was used to create a set of easy-to-use and rapid-response surrogates for identifying the function relationships between coal-blending operating conditions and health risks. Through replacing the CALPUFF and the corresponding hazard quotient equation with the surrogates, the computation efficiency could be improved. The developed SNPM was applied to minimize the human health risk associated with air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicated that it could be used for reducing the health risk of the public in the vicinity of the two power plants, identifying desired coal blending strategies for decision makers, and considering a proper balance between coal purchase cost and human health risk. Implications:A simulation-aided nonlinear programming model (SNPM) is developed. It integrates the advantages of CALPUFF and nonlinear programming model. To solve the model, a surrogate-based indirect search approach based on the combination of support vector regression and genetic algorithm is proposed. SNPM is applied to reduce the health risk caused by air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicate that it is useful for generating coal blending schemes, reducing the health risk of the public, reflecting the trade-off between coal purchase cost and health risk." @default.
- W2025295229 created "2016-06-24" @default.
- W2025295229 creator A5005810257 @default.
- W2025295229 creator A5025600307 @default.
- W2025295229 creator A5036073152 @default.
- W2025295229 creator A5040618989 @default.
- W2025295229 creator A5074446712 @default.
- W2025295229 creator A5076674902 @default.
- W2025295229 creator A5081020763 @default.
- W2025295229 date "2014-05-20" @default.
- W2025295229 modified "2023-09-24" @default.
- W2025295229 title "An integrated simulation and optimization approach for managing human health risks of atmospheric pollutants by coal-fired power plants" @default.
- W2025295229 cites W1541288193 @default.
- W2025295229 cites W1596952462 @default.
- W2025295229 cites W1964357740 @default.
- W2025295229 cites W1964432861 @default.
- W2025295229 cites W1965059337 @default.
- W2025295229 cites W1966816001 @default.
- W2025295229 cites W1969895389 @default.
- W2025295229 cites W1973622187 @default.
- W2025295229 cites W1975964730 @default.
- W2025295229 cites W1977448484 @default.
- W2025295229 cites W1982439200 @default.
- W2025295229 cites W1997881692 @default.
- W2025295229 cites W2007798814 @default.
- W2025295229 cites W2013061692 @default.
- W2025295229 cites W2018192341 @default.
- W2025295229 cites W2023244923 @default.
- W2025295229 cites W2028850930 @default.
- W2025295229 cites W2029372760 @default.
- W2025295229 cites W2030402896 @default.
- W2025295229 cites W2031998728 @default.
- W2025295229 cites W2037575202 @default.
- W2025295229 cites W2042079766 @default.
- W2025295229 cites W2047414360 @default.
- W2025295229 cites W2050416358 @default.
- W2025295229 cites W2052180697 @default.
- W2025295229 cites W2054713718 @default.
- W2025295229 cites W2055305392 @default.
- W2025295229 cites W2065922890 @default.
- W2025295229 cites W2068644144 @default.
- W2025295229 cites W2068922370 @default.
- W2025295229 cites W2069942641 @default.
- W2025295229 cites W2070399604 @default.
- W2025295229 cites W2073567384 @default.
- W2025295229 cites W2074678941 @default.
- W2025295229 cites W2078806622 @default.
- W2025295229 cites W2081482389 @default.
- W2025295229 cites W2083362714 @default.
- W2025295229 cites W2085170743 @default.
- W2025295229 cites W2089822708 @default.
- W2025295229 cites W2091187041 @default.
- W2025295229 cites W2091348859 @default.
- W2025295229 cites W2091571281 @default.
- W2025295229 cites W2091667015 @default.
- W2025295229 cites W2094239497 @default.
- W2025295229 cites W2095958878 @default.
- W2025295229 cites W2109996489 @default.
- W2025295229 cites W2110675116 @default.
- W2025295229 cites W2126272514 @default.
- W2025295229 cites W2145117680 @default.
- W2025295229 cites W2149298154 @default.
- W2025295229 cites W2156299468 @default.
- W2025295229 cites W2158994553 @default.
- W2025295229 cites W2160829192 @default.
- W2025295229 cites W2163654005 @default.
- W2025295229 cites W2171019608 @default.
- W2025295229 cites W2268134373 @default.
- W2025295229 cites W3123622325 @default.
- W2025295229 cites W63802623 @default.
- W2025295229 doi "https://doi.org/10.1080/10962247.2014.886639" @default.
- W2025295229 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25039204" @default.
- W2025295229 hasPublicationYear "2014" @default.
- W2025295229 type Work @default.
- W2025295229 sameAs 2025295229 @default.
- W2025295229 citedByCount "1" @default.
- W2025295229 countsByYear W20252952292016 @default.
- W2025295229 crossrefType "journal-article" @default.
- W2025295229 hasAuthorship W2025295229A5005810257 @default.
- W2025295229 hasAuthorship W2025295229A5025600307 @default.
- W2025295229 hasAuthorship W2025295229A5036073152 @default.
- W2025295229 hasAuthorship W2025295229A5040618989 @default.
- W2025295229 hasAuthorship W2025295229A5074446712 @default.
- W2025295229 hasAuthorship W2025295229A5076674902 @default.
- W2025295229 hasAuthorship W2025295229A5081020763 @default.
- W2025295229 hasConcept C115527620 @default.
- W2025295229 hasConcept C121332964 @default.
- W2025295229 hasConcept C127413603 @default.
- W2025295229 hasConcept C158622935 @default.
- W2025295229 hasConcept C41008148 @default.
- W2025295229 hasConcept C42475967 @default.
- W2025295229 hasConcept C62520636 @default.
- W2025295229 hasConceptScore W2025295229C115527620 @default.
- W2025295229 hasConceptScore W2025295229C121332964 @default.
- W2025295229 hasConceptScore W2025295229C127413603 @default.
- W2025295229 hasConceptScore W2025295229C158622935 @default.
- W2025295229 hasConceptScore W2025295229C41008148 @default.
- W2025295229 hasConceptScore W2025295229C42475967 @default.