Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025333932> ?p ?o ?g. }
- W2025333932 endingPage "3530" @default.
- W2025333932 startingPage "3520" @default.
- W2025333932 abstract "In this paper, we consider the problem of predicting a large scale spatial field using successive noisy measurements obtained by mobile sensing agents. The physical spatial field of interest is discretized and modeled by a Gaussian Markov random field (GMRF) with uncertain hyperparameters. From a Bayesian perspective, we design a sequential prediction algorithm to exactly compute the predictive inference of the random field. The main advantages of the proposed algorithm are: (1) the computational efficiency due to the sparse structure of the precision matrix, and (2) the scalability as the number of measurements increases. Thus, the prediction algorithm correctly takes into account the uncertainty in hyperparameters in a Bayesian way and is also scalable to be usable for mobile sensor networks with limited resources. We also present a distributed version of the prediction algorithm for a special case. An adaptive sampling strategy is presented for mobile sensing agents to find the most informative locations in taking future measurements in order to minimize the prediction error and the uncertainty in hyperparameters simultaneously. The effectiveness of the proposed algorithms is illustrated by numerical experiments." @default.
- W2025333932 created "2016-06-24" @default.
- W2025333932 creator A5028749019 @default.
- W2025333932 creator A5031419527 @default.
- W2025333932 creator A5070853135 @default.
- W2025333932 creator A5088272955 @default.
- W2025333932 date "2013-12-01" @default.
- W2025333932 modified "2023-10-17" @default.
- W2025333932 title "Efficient Bayesian spatial prediction with mobile sensor networks using Gaussian Markov random fields" @default.
- W2025333932 cites W105175822 @default.
- W2025333932 cites W1837874438 @default.
- W2025333932 cites W1973310094 @default.
- W2025333932 cites W1975388952 @default.
- W2025333932 cites W1988819790 @default.
- W2025333932 cites W1998406909 @default.
- W2025333932 cites W2011189221 @default.
- W2025333932 cites W2018771588 @default.
- W2025333932 cites W2021088595 @default.
- W2025333932 cites W2025800439 @default.
- W2025333932 cites W2048648163 @default.
- W2025333932 cites W2054930183 @default.
- W2025333932 cites W2069876697 @default.
- W2025333932 cites W2070005700 @default.
- W2025333932 cites W2076144137 @default.
- W2025333932 cites W2085339032 @default.
- W2025333932 cites W2101888913 @default.
- W2025333932 cites W2112411455 @default.
- W2025333932 cites W2132688592 @default.
- W2025333932 cites W2142705361 @default.
- W2025333932 cites W2144898279 @default.
- W2025333932 cites W2160643434 @default.
- W2025333932 cites W3159175630 @default.
- W2025333932 cites W4247393165 @default.
- W2025333932 doi "https://doi.org/10.1016/j.automatica.2013.09.008" @default.
- W2025333932 hasPublicationYear "2013" @default.
- W2025333932 type Work @default.
- W2025333932 sameAs 2025333932 @default.
- W2025333932 citedByCount "42" @default.
- W2025333932 countsByYear W20253339322013 @default.
- W2025333932 countsByYear W20253339322014 @default.
- W2025333932 countsByYear W20253339322015 @default.
- W2025333932 countsByYear W20253339322016 @default.
- W2025333932 countsByYear W20253339322017 @default.
- W2025333932 countsByYear W20253339322018 @default.
- W2025333932 countsByYear W20253339322019 @default.
- W2025333932 countsByYear W20253339322020 @default.
- W2025333932 countsByYear W20253339322021 @default.
- W2025333932 countsByYear W20253339322022 @default.
- W2025333932 countsByYear W20253339322023 @default.
- W2025333932 crossrefType "journal-article" @default.
- W2025333932 hasAuthorship W2025333932A5028749019 @default.
- W2025333932 hasAuthorship W2025333932A5031419527 @default.
- W2025333932 hasAuthorship W2025333932A5070853135 @default.
- W2025333932 hasAuthorship W2025333932A5088272955 @default.
- W2025333932 hasConcept C105795698 @default.
- W2025333932 hasConcept C107673813 @default.
- W2025333932 hasConcept C11413529 @default.
- W2025333932 hasConcept C119857082 @default.
- W2025333932 hasConcept C121332964 @default.
- W2025333932 hasConcept C130402806 @default.
- W2025333932 hasConcept C153180895 @default.
- W2025333932 hasConcept C154945302 @default.
- W2025333932 hasConcept C159620131 @default.
- W2025333932 hasConcept C160234255 @default.
- W2025333932 hasConcept C163716315 @default.
- W2025333932 hasConcept C163836022 @default.
- W2025333932 hasConcept C23224414 @default.
- W2025333932 hasConcept C33724603 @default.
- W2025333932 hasConcept C33923547 @default.
- W2025333932 hasConcept C41008148 @default.
- W2025333932 hasConcept C54907487 @default.
- W2025333932 hasConcept C61326573 @default.
- W2025333932 hasConcept C62520636 @default.
- W2025333932 hasConcept C71983512 @default.
- W2025333932 hasConcept C98763669 @default.
- W2025333932 hasConceptScore W2025333932C105795698 @default.
- W2025333932 hasConceptScore W2025333932C107673813 @default.
- W2025333932 hasConceptScore W2025333932C11413529 @default.
- W2025333932 hasConceptScore W2025333932C119857082 @default.
- W2025333932 hasConceptScore W2025333932C121332964 @default.
- W2025333932 hasConceptScore W2025333932C130402806 @default.
- W2025333932 hasConceptScore W2025333932C153180895 @default.
- W2025333932 hasConceptScore W2025333932C154945302 @default.
- W2025333932 hasConceptScore W2025333932C159620131 @default.
- W2025333932 hasConceptScore W2025333932C160234255 @default.
- W2025333932 hasConceptScore W2025333932C163716315 @default.
- W2025333932 hasConceptScore W2025333932C163836022 @default.
- W2025333932 hasConceptScore W2025333932C23224414 @default.
- W2025333932 hasConceptScore W2025333932C33724603 @default.
- W2025333932 hasConceptScore W2025333932C33923547 @default.
- W2025333932 hasConceptScore W2025333932C41008148 @default.
- W2025333932 hasConceptScore W2025333932C54907487 @default.
- W2025333932 hasConceptScore W2025333932C61326573 @default.
- W2025333932 hasConceptScore W2025333932C62520636 @default.
- W2025333932 hasConceptScore W2025333932C71983512 @default.
- W2025333932 hasConceptScore W2025333932C98763669 @default.
- W2025333932 hasIssue "12" @default.
- W2025333932 hasLocation W20253339321 @default.