Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025478275> ?p ?o ?g. }
- W2025478275 endingPage "1370" @default.
- W2025478275 startingPage "1348" @default.
- W2025478275 abstract "Abstract Inspired by Pohlers' local predicativity approach to Pure Proof Theory and Howard's ordinal analysis of bar recursion of type zero we present a short, technically smooth and constructive strong normalization proof for Gödel's system T of primitive recursive functionals of finite types by constructing an ε 0 -recursive function [] 0 : T → ω so that a reduces to b implies [ a ]0 > [ b ]0. The construction of [ ] 0 is based on a careful analysis of the Howard-Schütte treatment of Gödel's T and utilizes the collapsing function ψ : ε 0 → ω which has been developed by the author for a local predicativity style proof-theoretic analysis of PA . The construction of [ ] 0 is also crucially based on ideas developed in the 1995 paper “A proof of strongly uniform termination for Gödel's T by the method of local predicativity” by the author. The results on complexity bounds for the fragments of T which are obtained in this paper strengthen considerably the results of the 1995 paper. Indeed, for given n let T n be the subsystem of T in which the recursors have type level less than or equal to n + 2. (By definition, case distinction functionals for every type are also contained in T n .) As a corollary of the main theorem of this paper we obtain (reobtain?) optimal bounds for the T n -derivation lengths in terms of ω +2-descent recursive functions. The derivation lengths of type one functionals from T n (hence also their computational complexities) are classified optimally in terms of < ω n +2 -descent recursive functions. In particular we obtain (reobtain?) that the derivation lengths function of a type one functional a ∈ T 0 is primitive recursive, thus any type one functional a in T 0 defines a primitive recursive function. Similarly we also obtain (reobtain?) a full classification of T 1 in terms of multiple recursion. As proof-theoretic corollaries we reobtain the classification of the I Σ n +1 -provably recursive functions. Taking advantage from our finitistic and constructive treatment of the terms of Gödel's T we reobtain additionally (without employing continuous cut elimination techniques) that PRA + PRWO(ε 0 ) ⊢ Π 2 0 − Refl(PA) and PRA + PRWO( ω n +2 ) ⊢ Π 2 0 − Refl( I Σ n +1 ), hence PRA + PRWO(ε 0 ) ⊢ Con( PA ) and PRA + PRWO( ω n +2 ) ⊢ Con( I Σ n +1 ). For programmatic reasons we outline in the introduction a vision of how to apply a certain type of infinitary methods to questions of finitary mathematics and recursion theory. We also indicate some connections between ordinals, term rewriting, recursion theory and computational complexity." @default.
- W2025478275 created "2016-06-24" @default.
- W2025478275 creator A5056618682 @default.
- W2025478275 date "1998-12-01" @default.
- W2025478275 modified "2023-09-27" @default.
- W2025478275 title "How is it that infinitary methods can be applied to finitary mathematics? Gödel's T: a case study" @default.
- W2025478275 cites W143525190 @default.
- W2025478275 cites W1455834935 @default.
- W2025478275 cites W1525064220 @default.
- W2025478275 cites W1529036462 @default.
- W2025478275 cites W1579817075 @default.
- W2025478275 cites W1604936433 @default.
- W2025478275 cites W1608607427 @default.
- W2025478275 cites W165729215 @default.
- W2025478275 cites W1890908087 @default.
- W2025478275 cites W1968714331 @default.
- W2025478275 cites W1980969069 @default.
- W2025478275 cites W1996792588 @default.
- W2025478275 cites W1998796136 @default.
- W2025478275 cites W2049865932 @default.
- W2025478275 cites W2052953762 @default.
- W2025478275 cites W2062790079 @default.
- W2025478275 cites W2068743712 @default.
- W2025478275 cites W2069549740 @default.
- W2025478275 cites W2069792094 @default.
- W2025478275 cites W2075296484 @default.
- W2025478275 cites W2077219408 @default.
- W2025478275 cites W2092340582 @default.
- W2025478275 cites W2115737962 @default.
- W2025478275 cites W4236364473 @default.
- W2025478275 cites W45321844 @default.
- W2025478275 cites W87922972 @default.
- W2025478275 doi "https://doi.org/10.2307/2586654" @default.
- W2025478275 hasPublicationYear "1998" @default.
- W2025478275 type Work @default.
- W2025478275 sameAs 2025478275 @default.
- W2025478275 citedByCount "12" @default.
- W2025478275 countsByYear W20254782752012 @default.
- W2025478275 countsByYear W20254782752018 @default.
- W2025478275 countsByYear W20254782752019 @default.
- W2025478275 countsByYear W20254782752021 @default.
- W2025478275 crossrefType "journal-article" @default.
- W2025478275 hasAuthorship W2025478275A5056618682 @default.
- W2025478275 hasConcept C111919701 @default.
- W2025478275 hasConcept C11413529 @default.
- W2025478275 hasConcept C114614502 @default.
- W2025478275 hasConcept C118615104 @default.
- W2025478275 hasConcept C136886441 @default.
- W2025478275 hasConcept C14036430 @default.
- W2025478275 hasConcept C144024400 @default.
- W2025478275 hasConcept C168773036 @default.
- W2025478275 hasConcept C18903297 @default.
- W2025478275 hasConcept C19165224 @default.
- W2025478275 hasConcept C202444582 @default.
- W2025478275 hasConcept C202854965 @default.
- W2025478275 hasConcept C2777299769 @default.
- W2025478275 hasConcept C2778003309 @default.
- W2025478275 hasConcept C2778701210 @default.
- W2025478275 hasConcept C2780012671 @default.
- W2025478275 hasConcept C33923547 @default.
- W2025478275 hasConcept C41008148 @default.
- W2025478275 hasConcept C78458016 @default.
- W2025478275 hasConcept C86803240 @default.
- W2025478275 hasConcept C93682546 @default.
- W2025478275 hasConcept C98045186 @default.
- W2025478275 hasConcept C9986523 @default.
- W2025478275 hasConceptScore W2025478275C111919701 @default.
- W2025478275 hasConceptScore W2025478275C11413529 @default.
- W2025478275 hasConceptScore W2025478275C114614502 @default.
- W2025478275 hasConceptScore W2025478275C118615104 @default.
- W2025478275 hasConceptScore W2025478275C136886441 @default.
- W2025478275 hasConceptScore W2025478275C14036430 @default.
- W2025478275 hasConceptScore W2025478275C144024400 @default.
- W2025478275 hasConceptScore W2025478275C168773036 @default.
- W2025478275 hasConceptScore W2025478275C18903297 @default.
- W2025478275 hasConceptScore W2025478275C19165224 @default.
- W2025478275 hasConceptScore W2025478275C202444582 @default.
- W2025478275 hasConceptScore W2025478275C202854965 @default.
- W2025478275 hasConceptScore W2025478275C2777299769 @default.
- W2025478275 hasConceptScore W2025478275C2778003309 @default.
- W2025478275 hasConceptScore W2025478275C2778701210 @default.
- W2025478275 hasConceptScore W2025478275C2780012671 @default.
- W2025478275 hasConceptScore W2025478275C33923547 @default.
- W2025478275 hasConceptScore W2025478275C41008148 @default.
- W2025478275 hasConceptScore W2025478275C78458016 @default.
- W2025478275 hasConceptScore W2025478275C86803240 @default.
- W2025478275 hasConceptScore W2025478275C93682546 @default.
- W2025478275 hasConceptScore W2025478275C98045186 @default.
- W2025478275 hasConceptScore W2025478275C9986523 @default.
- W2025478275 hasIssue "4" @default.
- W2025478275 hasLocation W20254782751 @default.
- W2025478275 hasOpenAccess W2025478275 @default.
- W2025478275 hasPrimaryLocation W20254782751 @default.
- W2025478275 hasRelatedWork W1802255488 @default.
- W2025478275 hasRelatedWork W1841305169 @default.
- W2025478275 hasRelatedWork W1965517429 @default.
- W2025478275 hasRelatedWork W1972202041 @default.
- W2025478275 hasRelatedWork W1992729023 @default.