Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025562014> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2025562014 abstract "Using covariance as natural features for Classifying Polysomnographys signal was not new in the literature. In the literature, space of covariance is an abstract space, the Riemannian manifold. It is non-trivial to classify by using well-known classifier because all algorithms were designed for Euclidean space only. In order to overcome, there are two ways to classify with this feature. First way, it is possible apply directly by using based distance classifier such as k-nearest neighborhoods (k-NN) with the geodesic distance between two points in manifold. The second way, indirect method is to transform all covariance data to approximated tangent space of a specific symmetric and positive definite matrix and apply a classification method as usual way. All of these methods, themselves have drawback due to the distortion and the geometry of data. We introduced a method for extracting latent features by combining a kernel method. Thus, we used Kernel Local Fisher Discriminant Analysis (KLFDA) which is possible to take covariance matrices as its inputs. We evaluated our method on Sleep Stages Dataset and archived a better result compared to distance based and indirect method." @default.
- W2025562014 created "2016-06-24" @default.
- W2025562014 creator A5058671274 @default.
- W2025562014 creator A5073397037 @default.
- W2025562014 creator A5087619194 @default.
- W2025562014 date "2015-01-08" @default.
- W2025562014 modified "2023-10-18" @default.
- W2025562014 title "Feature extraction from covariance by using kernel method for classifying polysomnographys data" @default.
- W2025562014 cites W1545241942 @default.
- W2025562014 cites W1549083695 @default.
- W2025562014 cites W1575153708 @default.
- W2025562014 cites W1983104971 @default.
- W2025562014 cites W1983496390 @default.
- W2025562014 cites W2059640215 @default.
- W2025562014 cites W2109409043 @default.
- W2025562014 cites W2116022929 @default.
- W2025562014 cites W2147757279 @default.
- W2025562014 cites W2162800060 @default.
- W2025562014 cites W2167164761 @default.
- W2025562014 cites W2441535889 @default.
- W2025562014 cites W2541652489 @default.
- W2025562014 cites W3100876745 @default.
- W2025562014 cites W4206033904 @default.
- W2025562014 doi "https://doi.org/10.1145/2701126.2701204" @default.
- W2025562014 hasPublicationYear "2015" @default.
- W2025562014 type Work @default.
- W2025562014 sameAs 2025562014 @default.
- W2025562014 citedByCount "2" @default.
- W2025562014 countsByYear W20255620142015 @default.
- W2025562014 countsByYear W20255620142017 @default.
- W2025562014 crossrefType "proceedings-article" @default.
- W2025562014 hasAuthorship W2025562014A5058671274 @default.
- W2025562014 hasAuthorship W2025562014A5073397037 @default.
- W2025562014 hasAuthorship W2025562014A5087619194 @default.
- W2025562014 hasConcept C105795698 @default.
- W2025562014 hasConcept C114614502 @default.
- W2025562014 hasConcept C122280245 @default.
- W2025562014 hasConcept C12267149 @default.
- W2025562014 hasConcept C153180895 @default.
- W2025562014 hasConcept C154945302 @default.
- W2025562014 hasConcept C178650346 @default.
- W2025562014 hasConcept C185592680 @default.
- W2025562014 hasConcept C33923547 @default.
- W2025562014 hasConcept C41008148 @default.
- W2025562014 hasConcept C43617362 @default.
- W2025562014 hasConcept C4725764 @default.
- W2025562014 hasConcept C52622490 @default.
- W2025562014 hasConcept C74193536 @default.
- W2025562014 hasConceptScore W2025562014C105795698 @default.
- W2025562014 hasConceptScore W2025562014C114614502 @default.
- W2025562014 hasConceptScore W2025562014C122280245 @default.
- W2025562014 hasConceptScore W2025562014C12267149 @default.
- W2025562014 hasConceptScore W2025562014C153180895 @default.
- W2025562014 hasConceptScore W2025562014C154945302 @default.
- W2025562014 hasConceptScore W2025562014C178650346 @default.
- W2025562014 hasConceptScore W2025562014C185592680 @default.
- W2025562014 hasConceptScore W2025562014C33923547 @default.
- W2025562014 hasConceptScore W2025562014C41008148 @default.
- W2025562014 hasConceptScore W2025562014C43617362 @default.
- W2025562014 hasConceptScore W2025562014C4725764 @default.
- W2025562014 hasConceptScore W2025562014C52622490 @default.
- W2025562014 hasConceptScore W2025562014C74193536 @default.
- W2025562014 hasLocation W20255620141 @default.
- W2025562014 hasOpenAccess W2025562014 @default.
- W2025562014 hasPrimaryLocation W20255620141 @default.
- W2025562014 hasRelatedWork W1531536348 @default.
- W2025562014 hasRelatedWork W1990951311 @default.
- W2025562014 hasRelatedWork W2103444992 @default.
- W2025562014 hasRelatedWork W2108806452 @default.
- W2025562014 hasRelatedWork W2110459882 @default.
- W2025562014 hasRelatedWork W2117887974 @default.
- W2025562014 hasRelatedWork W2151022383 @default.
- W2025562014 hasRelatedWork W2164792662 @default.
- W2025562014 hasRelatedWork W2235018758 @default.
- W2025562014 hasRelatedWork W2603933437 @default.
- W2025562014 isParatext "false" @default.
- W2025562014 isRetracted "false" @default.
- W2025562014 magId "2025562014" @default.
- W2025562014 workType "article" @default.