Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025565547> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2025565547 abstract "Numerous studies have shown that ANN (Artificial Neural Networks) performs better than traditional regression model on air quality predicting. For better performance, an improved ANN model, called GA-ANN, is proposed, in which GA (genetic algorithm) is used to select a subset of factors from the original set and the GA-selected factors are fed into ANN for modeling and testing. In the experiments, air quality monitoring data and meteorological data (9 candidate factors) of Tianjin, China from 2003 to 2006 are utilized for modeling, and the data in 2007 is utilized for performance evaluation. Three models, including GA-ANN, normal ANN and PCA-ANN, are compared. The correlation coefficients of GA-ANN, which are calculated between monitoring and predicting values are both higher than the other two models for S02 (sulfur dioxide) and N02 (nitrogen dioxide) predicting. The results indicate that GA-ANN model performs better than another two models on air quality predicting." @default.
- W2025565547 created "2016-06-24" @default.
- W2025565547 creator A5008534055 @default.
- W2025565547 creator A5056429495 @default.
- W2025565547 creator A5065836602 @default.
- W2025565547 creator A5073501391 @default.
- W2025565547 creator A5089651239 @default.
- W2025565547 date "2010-12-01" @default.
- W2025565547 modified "2023-09-25" @default.
- W2025565547 title "A GA-ANN model for air quality predicting" @default.
- W2025565547 cites W1498548749 @default.
- W2025565547 cites W1971259134 @default.
- W2025565547 cites W1980016057 @default.
- W2025565547 cites W1999037911 @default.
- W2025565547 cites W2009329344 @default.
- W2025565547 cites W2016350822 @default.
- W2025565547 cites W2022668092 @default.
- W2025565547 cites W2058610724 @default.
- W2025565547 cites W2062011138 @default.
- W2025565547 cites W2066469118 @default.
- W2025565547 cites W2079794514 @default.
- W2025565547 cites W2101465260 @default.
- W2025565547 cites W2141212940 @default.
- W2025565547 cites W2142256019 @default.
- W2025565547 cites W2149651625 @default.
- W2025565547 doi "https://doi.org/10.1109/compsym.2010.5685425" @default.
- W2025565547 hasPublicationYear "2010" @default.
- W2025565547 type Work @default.
- W2025565547 sameAs 2025565547 @default.
- W2025565547 citedByCount "11" @default.
- W2025565547 countsByYear W20255655472012 @default.
- W2025565547 countsByYear W20255655472013 @default.
- W2025565547 countsByYear W20255655472019 @default.
- W2025565547 countsByYear W20255655472020 @default.
- W2025565547 countsByYear W20255655472021 @default.
- W2025565547 countsByYear W20255655472022 @default.
- W2025565547 countsByYear W20255655472023 @default.
- W2025565547 crossrefType "proceedings-article" @default.
- W2025565547 hasAuthorship W2025565547A5008534055 @default.
- W2025565547 hasAuthorship W2025565547A5056429495 @default.
- W2025565547 hasAuthorship W2025565547A5065836602 @default.
- W2025565547 hasAuthorship W2025565547A5073501391 @default.
- W2025565547 hasAuthorship W2025565547A5089651239 @default.
- W2025565547 hasConcept C121332964 @default.
- W2025565547 hasConcept C126314574 @default.
- W2025565547 hasConcept C153294291 @default.
- W2025565547 hasConcept C154945302 @default.
- W2025565547 hasConcept C2779530757 @default.
- W2025565547 hasConcept C41008148 @default.
- W2025565547 hasConcept C62520636 @default.
- W2025565547 hasConceptScore W2025565547C121332964 @default.
- W2025565547 hasConceptScore W2025565547C126314574 @default.
- W2025565547 hasConceptScore W2025565547C153294291 @default.
- W2025565547 hasConceptScore W2025565547C154945302 @default.
- W2025565547 hasConceptScore W2025565547C2779530757 @default.
- W2025565547 hasConceptScore W2025565547C41008148 @default.
- W2025565547 hasConceptScore W2025565547C62520636 @default.
- W2025565547 hasLocation W20255655471 @default.
- W2025565547 hasOpenAccess W2025565547 @default.
- W2025565547 hasPrimaryLocation W20255655471 @default.
- W2025565547 hasRelatedWork W2116911522 @default.
- W2025565547 hasRelatedWork W2358668433 @default.
- W2025565547 hasRelatedWork W2376932109 @default.
- W2025565547 hasRelatedWork W2382290278 @default.
- W2025565547 hasRelatedWork W2390279801 @default.
- W2025565547 hasRelatedWork W2748952813 @default.
- W2025565547 hasRelatedWork W2899084033 @default.
- W2025565547 hasRelatedWork W3123217783 @default.
- W2025565547 hasRelatedWork W3198146006 @default.
- W2025565547 hasRelatedWork W4200049083 @default.
- W2025565547 isParatext "false" @default.
- W2025565547 isRetracted "false" @default.
- W2025565547 magId "2025565547" @default.
- W2025565547 workType "article" @default.