Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025611902> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2025611902 abstract "Reducing highly non-stationary transient noise, such as keyboard typing noise, remains a challenging problem for many singlechannel speech enhancement algorithms. This paper proposes two approaches based on nonnegative matrix factorization (NMF) and probabilistic latent component analysis for transient noise reduction using a pre-trained transient noise dictionary and a universal speaker-independent speech dictionary. In addition, we develop an NMF-based speech enhancement scheme to simultaneously reduce transient and non-transient background noise, in which a low-dimensional dictionary is learnt from the noisy observations to model the background noise. We exploit the temporal dependencies of speech and background noise to design and apply informative priors via a probabilistic framework, while ignoring the temporal dynamics of the transient noise. Experimental results show that the proposed algorithms can improve the perceptual evaluation of speech quality (PESQ) up to 1.2 MOS for the keyboard typing noise." @default.
- W2025611902 created "2016-06-24" @default.
- W2025611902 creator A5037926175 @default.
- W2025611902 creator A5081426544 @default.
- W2025611902 date "2014-05-01" @default.
- W2025611902 modified "2023-10-16" @default.
- W2025611902 title "Transient noise reduction using nonnegative matrix factorization" @default.
- W2025611902 cites W1553437616 @default.
- W2025611902 cites W1974387177 @default.
- W2025611902 cites W1986227484 @default.
- W2025611902 cites W2013608223 @default.
- W2025611902 cites W2044002329 @default.
- W2025611902 cites W2051428568 @default.
- W2025611902 cites W2055671711 @default.
- W2025611902 cites W2078938585 @default.
- W2025611902 cites W2127851351 @default.
- W2025611902 cites W2135284480 @default.
- W2025611902 cites W2137075158 @default.
- W2025611902 cites W2404400936 @default.
- W2025611902 cites W4245919820 @default.
- W2025611902 doi "https://doi.org/10.1109/hscma.2014.6843245" @default.
- W2025611902 hasPublicationYear "2014" @default.
- W2025611902 type Work @default.
- W2025611902 sameAs 2025611902 @default.
- W2025611902 citedByCount "8" @default.
- W2025611902 countsByYear W20256119022015 @default.
- W2025611902 countsByYear W20256119022016 @default.
- W2025611902 countsByYear W20256119022018 @default.
- W2025611902 countsByYear W20256119022021 @default.
- W2025611902 crossrefType "proceedings-article" @default.
- W2025611902 hasAuthorship W2025611902A5037926175 @default.
- W2025611902 hasAuthorship W2025611902A5081426544 @default.
- W2025611902 hasConcept C103734657 @default.
- W2025611902 hasConcept C111919701 @default.
- W2025611902 hasConcept C115961682 @default.
- W2025611902 hasConcept C121332964 @default.
- W2025611902 hasConcept C152671427 @default.
- W2025611902 hasConcept C153180895 @default.
- W2025611902 hasConcept C154945302 @default.
- W2025611902 hasConcept C158693339 @default.
- W2025611902 hasConcept C163294075 @default.
- W2025611902 hasConcept C2776182073 @default.
- W2025611902 hasConcept C2780799671 @default.
- W2025611902 hasConcept C28490314 @default.
- W2025611902 hasConcept C29265498 @default.
- W2025611902 hasConcept C41008148 @default.
- W2025611902 hasConcept C42355184 @default.
- W2025611902 hasConcept C49937458 @default.
- W2025611902 hasConcept C62520636 @default.
- W2025611902 hasConcept C99498987 @default.
- W2025611902 hasConceptScore W2025611902C103734657 @default.
- W2025611902 hasConceptScore W2025611902C111919701 @default.
- W2025611902 hasConceptScore W2025611902C115961682 @default.
- W2025611902 hasConceptScore W2025611902C121332964 @default.
- W2025611902 hasConceptScore W2025611902C152671427 @default.
- W2025611902 hasConceptScore W2025611902C153180895 @default.
- W2025611902 hasConceptScore W2025611902C154945302 @default.
- W2025611902 hasConceptScore W2025611902C158693339 @default.
- W2025611902 hasConceptScore W2025611902C163294075 @default.
- W2025611902 hasConceptScore W2025611902C2776182073 @default.
- W2025611902 hasConceptScore W2025611902C2780799671 @default.
- W2025611902 hasConceptScore W2025611902C28490314 @default.
- W2025611902 hasConceptScore W2025611902C29265498 @default.
- W2025611902 hasConceptScore W2025611902C41008148 @default.
- W2025611902 hasConceptScore W2025611902C42355184 @default.
- W2025611902 hasConceptScore W2025611902C49937458 @default.
- W2025611902 hasConceptScore W2025611902C62520636 @default.
- W2025611902 hasConceptScore W2025611902C99498987 @default.
- W2025611902 hasLocation W20256119021 @default.
- W2025611902 hasOpenAccess W2025611902 @default.
- W2025611902 hasPrimaryLocation W20256119021 @default.
- W2025611902 hasRelatedWork W104438260 @default.
- W2025611902 hasRelatedWork W1572529640 @default.
- W2025611902 hasRelatedWork W1632545988 @default.
- W2025611902 hasRelatedWork W1973895194 @default.
- W2025611902 hasRelatedWork W2025611902 @default.
- W2025611902 hasRelatedWork W2357429071 @default.
- W2025611902 hasRelatedWork W2397741330 @default.
- W2025611902 hasRelatedWork W2405184167 @default.
- W2025611902 hasRelatedWork W2482610912 @default.
- W2025611902 hasRelatedWork W2539994084 @default.
- W2025611902 isParatext "false" @default.
- W2025611902 isRetracted "false" @default.
- W2025611902 magId "2025611902" @default.
- W2025611902 workType "article" @default.