Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025642685> ?p ?o ?g. }
- W2025642685 endingPage "969" @default.
- W2025642685 startingPage "964" @default.
- W2025642685 abstract "The use of numerous descriptors that are indicative of molecular structure and topology is becoming more common in quantitative structure-activity relationship (QSAR). How to choose the adequate descriptors for QSAR studies is important but difficult because there are no absolute rules to govern this choice. A variety of variable selection techniques including stepwise, partial least squares/principal component analysis (PLS/PCA), neural network, and evolutionary algorithm such as genetic algorithm have been applied to this common problem. All-subsets regression (ASR) is capable of finding out the best variable subset from among a large pool. In this paper, a novel variable selection and modeling method based on the prediction, for short VSMP, has been developed. Here two controllable parameters, the interrelation coefficient between the pairs of the independent variables (r(int)) and the correlation coefficient (q(2)) obtained using the leave-one-out (LOO) cross-validation technique, are introduced into the ASR to improve its performances. This technique differs from the other variable selection procedures related to the ASR by two main features: (1) The search of various optimal subset search is controlled by the statistic q(2) or root-mean-square error (RMSEP) in the LOO cross-validation step rather than the correlation coefficient obtained in the modeling step (r(2)). (2) The searching speed of all optimal subsets is expedited by the statistic r(int) together with q(2). A comparison of the results of the VSMP applied to the Selwood data set (n = 31 compounds, m = 53 descriptors) with those obtained from alternative algorithms shows the good performance of the technique." @default.
- W2025642685 created "2016-06-24" @default.
- W2025642685 creator A5006938103 @default.
- W2025642685 creator A5028416134 @default.
- W2025642685 creator A5031699197 @default.
- W2025642685 creator A5052846612 @default.
- W2025642685 date "2003-04-04" @default.
- W2025642685 modified "2023-10-17" @default.
- W2025642685 title "VSMP: A Novel Variable Selection and Modeling Method Based on the Prediction" @default.
- W2025642685 cites W1966793708 @default.
- W2025642685 cites W1987460555 @default.
- W2025642685 cites W1996346862 @default.
- W2025642685 cites W1999985301 @default.
- W2025642685 cites W2015870870 @default.
- W2025642685 cites W2063060349 @default.
- W2025642685 cites W2066831037 @default.
- W2025642685 cites W2072088140 @default.
- W2025642685 cites W2075937340 @default.
- W2025642685 cites W2087661061 @default.
- W2025642685 cites W2089867178 @default.
- W2025642685 cites W2101487943 @default.
- W2025642685 cites W2154671771 @default.
- W2025642685 cites W4244830062 @default.
- W2025642685 cites W4244971048 @default.
- W2025642685 doi "https://doi.org/10.1021/ci020377j" @default.
- W2025642685 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12767155" @default.
- W2025642685 hasPublicationYear "2003" @default.
- W2025642685 type Work @default.
- W2025642685 sameAs 2025642685 @default.
- W2025642685 citedByCount "91" @default.
- W2025642685 countsByYear W20256426852012 @default.
- W2025642685 countsByYear W20256426852013 @default.
- W2025642685 countsByYear W20256426852014 @default.
- W2025642685 countsByYear W20256426852015 @default.
- W2025642685 countsByYear W20256426852016 @default.
- W2025642685 countsByYear W20256426852017 @default.
- W2025642685 countsByYear W20256426852018 @default.
- W2025642685 countsByYear W20256426852019 @default.
- W2025642685 countsByYear W20256426852020 @default.
- W2025642685 countsByYear W20256426852021 @default.
- W2025642685 countsByYear W20256426852023 @default.
- W2025642685 crossrefType "journal-article" @default.
- W2025642685 hasAuthorship W2025642685A5006938103 @default.
- W2025642685 hasAuthorship W2025642685A5028416134 @default.
- W2025642685 hasAuthorship W2025642685A5031699197 @default.
- W2025642685 hasAuthorship W2025642685A5052846612 @default.
- W2025642685 hasConcept C105795698 @default.
- W2025642685 hasConcept C11413529 @default.
- W2025642685 hasConcept C117220453 @default.
- W2025642685 hasConcept C119857082 @default.
- W2025642685 hasConcept C125453309 @default.
- W2025642685 hasConcept C134306372 @default.
- W2025642685 hasConcept C148483581 @default.
- W2025642685 hasConcept C153180895 @default.
- W2025642685 hasConcept C154945302 @default.
- W2025642685 hasConcept C164126121 @default.
- W2025642685 hasConcept C177264268 @default.
- W2025642685 hasConcept C182365436 @default.
- W2025642685 hasConcept C199360897 @default.
- W2025642685 hasConcept C22354355 @default.
- W2025642685 hasConcept C2524010 @default.
- W2025642685 hasConcept C27181475 @default.
- W2025642685 hasConcept C27438332 @default.
- W2025642685 hasConcept C2780092901 @default.
- W2025642685 hasConcept C33923547 @default.
- W2025642685 hasConcept C41008148 @default.
- W2025642685 hasConcept C50644808 @default.
- W2025642685 hasConcept C64708745 @default.
- W2025642685 hasConcept C81917197 @default.
- W2025642685 hasConcept C89128539 @default.
- W2025642685 hasConceptScore W2025642685C105795698 @default.
- W2025642685 hasConceptScore W2025642685C11413529 @default.
- W2025642685 hasConceptScore W2025642685C117220453 @default.
- W2025642685 hasConceptScore W2025642685C119857082 @default.
- W2025642685 hasConceptScore W2025642685C125453309 @default.
- W2025642685 hasConceptScore W2025642685C134306372 @default.
- W2025642685 hasConceptScore W2025642685C148483581 @default.
- W2025642685 hasConceptScore W2025642685C153180895 @default.
- W2025642685 hasConceptScore W2025642685C154945302 @default.
- W2025642685 hasConceptScore W2025642685C164126121 @default.
- W2025642685 hasConceptScore W2025642685C177264268 @default.
- W2025642685 hasConceptScore W2025642685C182365436 @default.
- W2025642685 hasConceptScore W2025642685C199360897 @default.
- W2025642685 hasConceptScore W2025642685C22354355 @default.
- W2025642685 hasConceptScore W2025642685C2524010 @default.
- W2025642685 hasConceptScore W2025642685C27181475 @default.
- W2025642685 hasConceptScore W2025642685C27438332 @default.
- W2025642685 hasConceptScore W2025642685C2780092901 @default.
- W2025642685 hasConceptScore W2025642685C33923547 @default.
- W2025642685 hasConceptScore W2025642685C41008148 @default.
- W2025642685 hasConceptScore W2025642685C50644808 @default.
- W2025642685 hasConceptScore W2025642685C64708745 @default.
- W2025642685 hasConceptScore W2025642685C81917197 @default.
- W2025642685 hasConceptScore W2025642685C89128539 @default.
- W2025642685 hasIssue "3" @default.
- W2025642685 hasLocation W20256426851 @default.
- W2025642685 hasLocation W20256426852 @default.
- W2025642685 hasOpenAccess W2025642685 @default.