Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025656474> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2025656474 abstract "This article presents a specific approach for selecting a limited set of most relevant, information rich speech data from the whole amount of training data. The proposed method uses Principal Component Analysis (PCA) to optimally select a lower-dimensional data subset with similar variances. In this paper, three selection algorithms, based on eigenvalue criterion are presented. The first one operates and analyzes the data at the entire speech-recording level. The second one additionally segments each of the recordings into experimentally sized blocks, which theoretically divides a record level into several smaller information richer/poorer blocks. Finally, the third one analyzes all the speech records at the feature vector level. These three approaches represent three different criterion-based selection techniques from the coarsest to the finest data level. The main aim of the presented experiments is to show that PCA trained with the limited subset of data achieves comparable or even better results than PCA trained with the entire speech corpus. In fact, this approach can radically speed up the learning of PCA with much smaller memory and computational costs. All methods are evaluated in Slovak phoneme-based large vocabulary continuous speech recognition task." @default.
- W2025656474 created "2016-06-24" @default.
- W2025656474 creator A5041020641 @default.
- W2025656474 creator A5041567202 @default.
- W2025656474 creator A5060137749 @default.
- W2025656474 date "2012-11-24" @default.
- W2025656474 modified "2023-09-23" @default.
- W2025656474 title "Eigenvalue Criterion-Based Feature Selectionin Principal Component Analysis of Speech" @default.
- W2025656474 cites W114910667 @default.
- W2025656474 cites W1962875071 @default.
- W2025656474 cites W2152051032 @default.
- W2025656474 cites W281791438 @default.
- W2025656474 cites W3099514962 @default.
- W2025656474 doi "https://doi.org/10.15598/aeee.v10i4.723" @default.
- W2025656474 hasPublicationYear "2012" @default.
- W2025656474 type Work @default.
- W2025656474 sameAs 2025656474 @default.
- W2025656474 citedByCount "0" @default.
- W2025656474 crossrefType "journal-article" @default.
- W2025656474 hasAuthorship W2025656474A5041020641 @default.
- W2025656474 hasAuthorship W2025656474A5041567202 @default.
- W2025656474 hasAuthorship W2025656474A5060137749 @default.
- W2025656474 hasBestOaLocation W20256564741 @default.
- W2025656474 hasConcept C121332964 @default.
- W2025656474 hasConcept C138885662 @default.
- W2025656474 hasConcept C153180895 @default.
- W2025656474 hasConcept C154945302 @default.
- W2025656474 hasConcept C158693339 @default.
- W2025656474 hasConcept C168167062 @default.
- W2025656474 hasConcept C27438332 @default.
- W2025656474 hasConcept C2776401178 @default.
- W2025656474 hasConcept C28490314 @default.
- W2025656474 hasConcept C33923547 @default.
- W2025656474 hasConcept C41008148 @default.
- W2025656474 hasConcept C41895202 @default.
- W2025656474 hasConcept C62520636 @default.
- W2025656474 hasConcept C97355855 @default.
- W2025656474 hasConceptScore W2025656474C121332964 @default.
- W2025656474 hasConceptScore W2025656474C138885662 @default.
- W2025656474 hasConceptScore W2025656474C153180895 @default.
- W2025656474 hasConceptScore W2025656474C154945302 @default.
- W2025656474 hasConceptScore W2025656474C158693339 @default.
- W2025656474 hasConceptScore W2025656474C168167062 @default.
- W2025656474 hasConceptScore W2025656474C27438332 @default.
- W2025656474 hasConceptScore W2025656474C2776401178 @default.
- W2025656474 hasConceptScore W2025656474C28490314 @default.
- W2025656474 hasConceptScore W2025656474C33923547 @default.
- W2025656474 hasConceptScore W2025656474C41008148 @default.
- W2025656474 hasConceptScore W2025656474C41895202 @default.
- W2025656474 hasConceptScore W2025656474C62520636 @default.
- W2025656474 hasConceptScore W2025656474C97355855 @default.
- W2025656474 hasIssue "4" @default.
- W2025656474 hasLocation W20256564741 @default.
- W2025656474 hasOpenAccess W2025656474 @default.
- W2025656474 hasPrimaryLocation W20256564741 @default.
- W2025656474 hasRelatedWork W1730321886 @default.
- W2025656474 hasRelatedWork W2035485413 @default.
- W2025656474 hasRelatedWork W2065962751 @default.
- W2025656474 hasRelatedWork W2099082374 @default.
- W2025656474 hasRelatedWork W2350910173 @default.
- W2025656474 hasRelatedWork W2361120152 @default.
- W2025656474 hasRelatedWork W2364104900 @default.
- W2025656474 hasRelatedWork W2367542179 @default.
- W2025656474 hasRelatedWork W2367887236 @default.
- W2025656474 hasRelatedWork W2392902557 @default.
- W2025656474 hasVolume "10" @default.
- W2025656474 isParatext "false" @default.
- W2025656474 isRetracted "false" @default.
- W2025656474 magId "2025656474" @default.
- W2025656474 workType "article" @default.