Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025671845> ?p ?o ?g. }
- W2025671845 endingPage "3119" @default.
- W2025671845 startingPage "3104" @default.
- W2025671845 abstract "The chemisorption of hydrogen on both the Ir(111) and Pt(110)‐(1×2) surfaces has been examined under ultrahigh vacuum conditions with thermal desorption mass spectrometry, LEED, and contact potential difference measurements. No ordered adsorbate superstructures were observed on either surface at any fractional coverage and at surface temperatures from 100 to 700 K, and the (1×2) reconstruction of the Pt(110) surface was stable in all cases. Hydrogen adsorbs dissociatively on the Ir(111) surface, the adsorption reaction described by second‐order Langmuir kinetics with an initial probability of adsorption of 7×10−3. The rate parameters describing the second‐order desorption reaction of hydrogen from the Ir(111) surface are weakly dependent on coverage between fractional coverages of 0.1 and 0.3, and are given by Ed ≂12.6 kcal mol−1 and k(2)d ≂2×10−6 cm2 s−1. Beyond a fractional coverage of 0.3, however, both rate parameters decrease with increasing coverage. Hydrogen adsorbs dissociatively on the Pt(110)‐(1×2) surface into two distinct β2 and β1 adstates, and the ratio of the saturation densities of these two states, β2:β1, is 1:2. Adsorption into the higher binding energy β2 adstate is described by first‐order Langmuir kinetics with an initial probability of adsorption of 0.46, whereas adsorption into the β1 adstate is described by second‐order Langmuir kinetics with an ‘‘initial’’ probability of adsorption of 0.022. The rate parameters describing the desorption reaction of hydrogen fromthe Pt(110)‐(1×2) surface are strongly dependent on the coverage. In the coverage regime characteristic of the β2 adstate (θ≤0.32) the rate parameters are approximately symmetric about one‐half of saturation of this state. Specifically, from the values for the zero‐coverage limit of Ed ≂18 kcal mol−1 and k(2)d ≂10−4 cm2 s−1, the parameters first increase to maximum values of Ed ≂26.5 kcal mol−1 and k(2)d ≂0.3 cm2 s−1 at θ=0.15, and subsequently decrease approximately to the values for the zero‐coverage limit at θ=0.32 In the coverage regime characteristic of the β1 adstate (θ>0.32), the activation energy decreases continuously with increasing coverage from a value of Ed ≂17 kcal mol−1 at θ=0.35, whereas the preexponential factor remains essentially constant with a value of 3×10−4 cm2 s−1. The contact potential difference for hydrogen on Pt(110)‐(1×2) increases continuously with coverage to a value of 0.17 eV at θ=0.30. As the coverage increases further, however, it decreases continuously approaching a value of −0.50 eV at saturation. Probable binding states for the β2 and β1 adstates on the Pt(110)‐(1×2) surface are inferred from both the adsorption and desorption kinetics and the contact potential difference measurements. Comparisons of the results obtained on the (111) and (110)‐(1×2) surfaces of both iridium and platinum suggest strongly that local surface structure (e.g., ‘‘step’’ sites vs terrace sites) has a profound influence on the kinetics of adsorption of hydrogen on these surfaces. Surface structure apparently also has a profound influence on the desorption kinetics of hydrogen via the mediation of adatom–adatom interactions. Whereas both attractive and repulsive interactions are clearly manifest within the β2 adstates on the (110)‐(1×2) surfaces, only repulsive interactions are apparent on the (111) surfaces and for the β1 adstates on the (110)‐(1×2) surfaces." @default.
- W2025671845 created "2016-06-24" @default.
- W2025671845 creator A5070997428 @default.
- W2025671845 creator A5075426222 @default.
- W2025671845 creator A5087591655 @default.
- W2025671845 date "1987-09-01" @default.
- W2025671845 modified "2023-09-26" @default.
- W2025671845 title "The chemisorption of hydrogen on the (111) and (110)‐(1×2) surfaces of iridium and platinum" @default.
- W2025671845 cites W125895104 @default.
- W2025671845 cites W1966108552 @default.
- W2025671845 cites W1969537736 @default.
- W2025671845 cites W1972215762 @default.
- W2025671845 cites W1980577175 @default.
- W2025671845 cites W1982395607 @default.
- W2025671845 cites W1983641153 @default.
- W2025671845 cites W1988211202 @default.
- W2025671845 cites W1988800609 @default.
- W2025671845 cites W1991984954 @default.
- W2025671845 cites W1994179693 @default.
- W2025671845 cites W1997430731 @default.
- W2025671845 cites W2001470212 @default.
- W2025671845 cites W2003716745 @default.
- W2025671845 cites W2004183267 @default.
- W2025671845 cites W2005328050 @default.
- W2025671845 cites W2007006225 @default.
- W2025671845 cites W2007877766 @default.
- W2025671845 cites W2008815155 @default.
- W2025671845 cites W2010864934 @default.
- W2025671845 cites W2016753192 @default.
- W2025671845 cites W2021671437 @default.
- W2025671845 cites W2022122086 @default.
- W2025671845 cites W2022146005 @default.
- W2025671845 cites W2027211705 @default.
- W2025671845 cites W2036186208 @default.
- W2025671845 cites W2037712575 @default.
- W2025671845 cites W2044351903 @default.
- W2025671845 cites W2048353665 @default.
- W2025671845 cites W2049587243 @default.
- W2025671845 cites W2050599498 @default.
- W2025671845 cites W2060003035 @default.
- W2025671845 cites W2064261476 @default.
- W2025671845 cites W2066231622 @default.
- W2025671845 cites W2068113823 @default.
- W2025671845 cites W2071890513 @default.
- W2025671845 cites W2078533227 @default.
- W2025671845 cites W2083855355 @default.
- W2025671845 cites W2085791781 @default.
- W2025671845 cites W2087604977 @default.
- W2025671845 cites W2092680234 @default.
- W2025671845 cites W2094639057 @default.
- W2025671845 cites W2099531811 @default.
- W2025671845 cites W2127773073 @default.
- W2025671845 cites W3022445334 @default.
- W2025671845 cites W4231662617 @default.
- W2025671845 cites W4233286408 @default.
- W2025671845 cites W4236895186 @default.
- W2025671845 doi "https://doi.org/10.1063/1.453048" @default.
- W2025671845 hasPublicationYear "1987" @default.
- W2025671845 type Work @default.
- W2025671845 sameAs 2025671845 @default.
- W2025671845 citedByCount "111" @default.
- W2025671845 countsByYear W20256718452012 @default.
- W2025671845 countsByYear W20256718452013 @default.
- W2025671845 countsByYear W20256718452015 @default.
- W2025671845 countsByYear W20256718452016 @default.
- W2025671845 countsByYear W20256718452017 @default.
- W2025671845 countsByYear W20256718452018 @default.
- W2025671845 countsByYear W20256718452019 @default.
- W2025671845 countsByYear W20256718452020 @default.
- W2025671845 countsByYear W20256718452021 @default.
- W2025671845 countsByYear W20256718452022 @default.
- W2025671845 countsByYear W20256718452023 @default.
- W2025671845 crossrefType "journal-article" @default.
- W2025671845 hasAuthorship W2025671845A5070997428 @default.
- W2025671845 hasAuthorship W2025671845A5075426222 @default.
- W2025671845 hasAuthorship W2025671845A5087591655 @default.
- W2025671845 hasConcept C113196181 @default.
- W2025671845 hasConcept C114614502 @default.
- W2025671845 hasConcept C115958267 @default.
- W2025671845 hasConcept C121332964 @default.
- W2025671845 hasConcept C12143843 @default.
- W2025671845 hasConcept C135502975 @default.
- W2025671845 hasConcept C147789679 @default.
- W2025671845 hasConcept C148898269 @default.
- W2025671845 hasConcept C150394285 @default.
- W2025671845 hasConcept C155916967 @default.
- W2025671845 hasConcept C161790260 @default.
- W2025671845 hasConcept C162711632 @default.
- W2025671845 hasConcept C178790620 @default.
- W2025671845 hasConcept C185592680 @default.
- W2025671845 hasConcept C2779758070 @default.
- W2025671845 hasConcept C2781059571 @default.
- W2025671845 hasConcept C33790079 @default.
- W2025671845 hasConcept C33923547 @default.
- W2025671845 hasConcept C512968161 @default.
- W2025671845 hasConcept C518104683 @default.
- W2025671845 hasConcept C528581852 @default.
- W2025671845 hasConcept C62520636 @default.