Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025678066> ?p ?o ?g. }
- W2025678066 endingPage "7233" @default.
- W2025678066 startingPage "7221" @default.
- W2025678066 abstract "Transcriptional regulation of ribosome and tRNA synthesis plays a central role in determining protein synthetic capacity and is tightly controlled in response to nutrient availability and cellular stress. In Saccharomyces cerevisiae, the regulation of ribosome and tRNA synthesis was recently shown to involve the Cdc-like kinase Kns1 and the GSK-3 kinase Mck1. In this study, we explored additional roles for these conserved kinases in processes connected to the target of rapamycin complex 1 (TORC1). We conducted a synthetic chemical-genetic screen in a kns1Δ mck1Δ strain and identified many novel rapamycin-hypersensitive genes. Gene ontology analysis showed enrichment for TORC1-regulated processes (vesicle-mediated transport, autophagy, and regulation of cell size) and identified new connections to protein complexes including the protein kinase CK2. CK2 is considered to be a constitutively active kinase and in budding yeast, the holoenzyme comprises two regulatory subunits, Ckb1 and Ckb2, and two catalytic subunits, Cka1 and Cka2. We show that Ckb1 is differentially phosphorylated in vivo and that Kns1 mediates this phosphorylation when nutrients are limiting and under all tested stress conditions. We determined that the phosphorylation of Ckb1 does not detectably affect the stability of the CK2 holoenzyme but correlates with the reduced occupancy of Ckb1 on tRNA genes after rapamycin treatment. Thus, the differential occupancy of tRNA genes by CK2 is likely to modulate its activation of RNA polymerase III transcription. Our data suggest that TORC1, via its effector kinase Kns1, may regulate the association of CK2 with some of its substrates by phosphorylating Ckb1. Transcriptional regulation of ribosome and tRNA synthesis plays a central role in determining protein synthetic capacity and is tightly controlled in response to nutrient availability and cellular stress. In Saccharomyces cerevisiae, the regulation of ribosome and tRNA synthesis was recently shown to involve the Cdc-like kinase Kns1 and the GSK-3 kinase Mck1. In this study, we explored additional roles for these conserved kinases in processes connected to the target of rapamycin complex 1 (TORC1). We conducted a synthetic chemical-genetic screen in a kns1Δ mck1Δ strain and identified many novel rapamycin-hypersensitive genes. Gene ontology analysis showed enrichment for TORC1-regulated processes (vesicle-mediated transport, autophagy, and regulation of cell size) and identified new connections to protein complexes including the protein kinase CK2. CK2 is considered to be a constitutively active kinase and in budding yeast, the holoenzyme comprises two regulatory subunits, Ckb1 and Ckb2, and two catalytic subunits, Cka1 and Cka2. We show that Ckb1 is differentially phosphorylated in vivo and that Kns1 mediates this phosphorylation when nutrients are limiting and under all tested stress conditions. We determined that the phosphorylation of Ckb1 does not detectably affect the stability of the CK2 holoenzyme but correlates with the reduced occupancy of Ckb1 on tRNA genes after rapamycin treatment. Thus, the differential occupancy of tRNA genes by CK2 is likely to modulate its activation of RNA polymerase III transcription. Our data suggest that TORC1, via its effector kinase Kns1, may regulate the association of CK2 with some of its substrates by phosphorylating Ckb1." @default.
- W2025678066 created "2016-06-24" @default.
- W2025678066 creator A5017045603 @default.
- W2025678066 creator A5033603144 @default.
- W2025678066 creator A5056831441 @default.
- W2025678066 creator A5064407466 @default.
- W2025678066 creator A5080003680 @default.
- W2025678066 creator A5082972006 @default.
- W2025678066 date "2015-03-01" @default.
- W2025678066 modified "2023-10-16" @default.
- W2025678066 title "Differential Phosphorylation of a Regulatory Subunit of Protein Kinase CK2 by Target of Rapamycin Complex 1 Signaling and the Cdc-like Kinase Kns1" @default.
- W2025678066 cites W1495640495 @default.
- W2025678066 cites W1509548956 @default.
- W2025678066 cites W1564573091 @default.
- W2025678066 cites W1587089803 @default.
- W2025678066 cites W1604566898 @default.
- W2025678066 cites W1955061672 @default.
- W2025678066 cites W1969375092 @default.
- W2025678066 cites W1979170620 @default.
- W2025678066 cites W1985091876 @default.
- W2025678066 cites W1985152077 @default.
- W2025678066 cites W1985213868 @default.
- W2025678066 cites W1989286864 @default.
- W2025678066 cites W1993050748 @default.
- W2025678066 cites W1995229527 @default.
- W2025678066 cites W1999135942 @default.
- W2025678066 cites W2007324616 @default.
- W2025678066 cites W2011463708 @default.
- W2025678066 cites W2011939668 @default.
- W2025678066 cites W2013947447 @default.
- W2025678066 cites W2014308231 @default.
- W2025678066 cites W2015936563 @default.
- W2025678066 cites W2023453144 @default.
- W2025678066 cites W2031097644 @default.
- W2025678066 cites W2044389552 @default.
- W2025678066 cites W2045287001 @default.
- W2025678066 cites W2049579102 @default.
- W2025678066 cites W2049883153 @default.
- W2025678066 cites W2050067588 @default.
- W2025678066 cites W2054257450 @default.
- W2025678066 cites W2060015604 @default.
- W2025678066 cites W2062185406 @default.
- W2025678066 cites W2068638497 @default.
- W2025678066 cites W2074286346 @default.
- W2025678066 cites W2077849012 @default.
- W2025678066 cites W2078267259 @default.
- W2025678066 cites W2083274478 @default.
- W2025678066 cites W2085173493 @default.
- W2025678066 cites W2085289028 @default.
- W2025678066 cites W2087846512 @default.
- W2025678066 cites W2102221598 @default.
- W2025678066 cites W2106579945 @default.
- W2025678066 cites W2107277218 @default.
- W2025678066 cites W2110434279 @default.
- W2025678066 cites W2116263238 @default.
- W2025678066 cites W2116447934 @default.
- W2025678066 cites W2118751823 @default.
- W2025678066 cites W2127063807 @default.
- W2025678066 cites W2128491398 @default.
- W2025678066 cites W2129104457 @default.
- W2025678066 cites W2130334754 @default.
- W2025678066 cites W2133102806 @default.
- W2025678066 cites W2134138119 @default.
- W2025678066 cites W2134930468 @default.
- W2025678066 cites W2135573097 @default.
- W2025678066 cites W2142264061 @default.
- W2025678066 cites W2146672317 @default.
- W2025678066 cites W2150078352 @default.
- W2025678066 cites W2171977912 @default.
- W2025678066 cites W2314221598 @default.
- W2025678066 cites W2558040239 @default.
- W2025678066 doi "https://doi.org/10.1074/jbc.m114.626523" @default.
- W2025678066 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4358141" @default.
- W2025678066 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25631054" @default.
- W2025678066 hasPublicationYear "2015" @default.
- W2025678066 type Work @default.
- W2025678066 sameAs 2025678066 @default.
- W2025678066 citedByCount "29" @default.
- W2025678066 countsByYear W20256780662015 @default.
- W2025678066 countsByYear W20256780662016 @default.
- W2025678066 countsByYear W20256780662017 @default.
- W2025678066 countsByYear W20256780662018 @default.
- W2025678066 countsByYear W20256780662019 @default.
- W2025678066 countsByYear W20256780662020 @default.
- W2025678066 countsByYear W20256780662021 @default.
- W2025678066 countsByYear W20256780662022 @default.
- W2025678066 countsByYear W20256780662023 @default.
- W2025678066 crossrefType "journal-article" @default.
- W2025678066 hasAuthorship W2025678066A5017045603 @default.
- W2025678066 hasAuthorship W2025678066A5033603144 @default.
- W2025678066 hasAuthorship W2025678066A5056831441 @default.
- W2025678066 hasAuthorship W2025678066A5064407466 @default.
- W2025678066 hasAuthorship W2025678066A5080003680 @default.
- W2025678066 hasAuthorship W2025678066A5082972006 @default.
- W2025678066 hasBestOaLocation W20256780661 @default.
- W2025678066 hasConcept C104292427 @default.
- W2025678066 hasConcept C104317684 @default.
- W2025678066 hasConcept C11960822 @default.