Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025742381> ?p ?o ?g. }
- W2025742381 abstract "Abstract Machine vision systems are being increasingly used for sophisticated applications such as classification and process control. Though there is significant potential for the increased deployment of industrial vision systems, a number of important problems have to be addressed to sustain growth in the area of industrial machine vision. Artificial neural networks (ANNs) coupled with machine vision systems offer a new methodology for solving difficult computational problems in many areas of science and engineering. As a consequence, the research work presented in this paper investigates several novel uses of machine vision and ANNs in the processing of single camera multi-positional images for 2D and 3D object recognition and classification. Many industrial applications of machine vision allow objects to be identified and classified by their boundary contour or silhouette. Boundary contour information was chosen as an effective method of representing the industrial component, a composite signature being generated using vectors obtained from the generation of multi-centroidal positions and the boundary pixels. The composite signature can be re-sampled to form a suitable input vector for an ANN. Three different ANN topologies have been implemented: the multi-layer perceptron (MLP), a learning vector quantisation network (LVQ) and hybrid self-organising map (SOM). This method of representing industrial components has been used to compare the ANN architectures when implemented as classifiers based on shape and dimensional tolerance. A number of shortcomings with this methodology have been highlighted, most importantly the identification of a unique sequence start point, vital for rotation invariance. Another problem may arise due to the conflict between the inherent robustness of ANNs when dealing with noise, and classifying components which are similar but display subtle dimensional differences." @default.
- W2025742381 created "2016-06-24" @default.
- W2025742381 creator A5000920404 @default.
- W2025742381 creator A5069271507 @default.
- W2025742381 date "2002-06-01" @default.
- W2025742381 modified "2023-10-02" @default.
- W2025742381 title "Performance analysis and optimisation of shape recognition and classification using ANN" @default.
- W2025742381 cites W1975995798 @default.
- W2025742381 cites W1978300640 @default.
- W2025742381 cites W1979762710 @default.
- W2025742381 cites W1980339637 @default.
- W2025742381 cites W1983960057 @default.
- W2025742381 cites W1984571257 @default.
- W2025742381 cites W1987748520 @default.
- W2025742381 cites W1987860849 @default.
- W2025742381 cites W1989916340 @default.
- W2025742381 cites W1995854092 @default.
- W2025742381 cites W1996151042 @default.
- W2025742381 cites W1997490294 @default.
- W2025742381 cites W2001398776 @default.
- W2025742381 cites W2005087974 @default.
- W2025742381 cites W2006030431 @default.
- W2025742381 cites W2006996616 @default.
- W2025742381 cites W2007838014 @default.
- W2025742381 cites W2008832158 @default.
- W2025742381 cites W2010197998 @default.
- W2025742381 cites W2013927459 @default.
- W2025742381 cites W2014965905 @default.
- W2025742381 cites W2018200089 @default.
- W2025742381 cites W2019722624 @default.
- W2025742381 cites W2022750154 @default.
- W2025742381 cites W2023532711 @default.
- W2025742381 cites W2031400698 @default.
- W2025742381 cites W2035062565 @default.
- W2025742381 cites W2038242369 @default.
- W2025742381 cites W2038483314 @default.
- W2025742381 cites W2048281471 @default.
- W2025742381 cites W2057936307 @default.
- W2025742381 cites W2058169465 @default.
- W2025742381 cites W2059319463 @default.
- W2025742381 cites W2060762711 @default.
- W2025742381 cites W2064281717 @default.
- W2025742381 cites W2064880090 @default.
- W2025742381 cites W2066103281 @default.
- W2025742381 cites W2070366035 @default.
- W2025742381 cites W2084443674 @default.
- W2025742381 cites W2086361254 @default.
- W2025742381 cites W2091047568 @default.
- W2025742381 cites W2091906883 @default.
- W2025742381 cites W2094305627 @default.
- W2025742381 cites W2095308857 @default.
- W2025742381 cites W2119824625 @default.
- W2025742381 cites W2124920211 @default.
- W2025742381 cites W2136957097 @default.
- W2025742381 cites W2157145810 @default.
- W2025742381 cites W2165764797 @default.
- W2025742381 cites W2058786669 @default.
- W2025742381 doi "https://doi.org/10.1016/s0736-5845(02)00008-x" @default.
- W2025742381 hasPublicationYear "2002" @default.
- W2025742381 type Work @default.
- W2025742381 sameAs 2025742381 @default.
- W2025742381 citedByCount "9" @default.
- W2025742381 countsByYear W20257423812012 @default.
- W2025742381 countsByYear W20257423812013 @default.
- W2025742381 countsByYear W20257423812020 @default.
- W2025742381 crossrefType "journal-article" @default.
- W2025742381 hasAuthorship W2025742381A5000920404 @default.
- W2025742381 hasAuthorship W2025742381A5069271507 @default.
- W2025742381 hasConcept C119857082 @default.
- W2025742381 hasConcept C12267149 @default.
- W2025742381 hasConcept C153180895 @default.
- W2025742381 hasConcept C154945302 @default.
- W2025742381 hasConcept C179717631 @default.
- W2025742381 hasConcept C31972630 @default.
- W2025742381 hasConcept C40567965 @default.
- W2025742381 hasConcept C41008148 @default.
- W2025742381 hasConcept C50644808 @default.
- W2025742381 hasConcept C5339829 @default.
- W2025742381 hasConcept C58103923 @default.
- W2025742381 hasConcept C60908668 @default.
- W2025742381 hasConceptScore W2025742381C119857082 @default.
- W2025742381 hasConceptScore W2025742381C12267149 @default.
- W2025742381 hasConceptScore W2025742381C153180895 @default.
- W2025742381 hasConceptScore W2025742381C154945302 @default.
- W2025742381 hasConceptScore W2025742381C179717631 @default.
- W2025742381 hasConceptScore W2025742381C31972630 @default.
- W2025742381 hasConceptScore W2025742381C40567965 @default.
- W2025742381 hasConceptScore W2025742381C41008148 @default.
- W2025742381 hasConceptScore W2025742381C50644808 @default.
- W2025742381 hasConceptScore W2025742381C5339829 @default.
- W2025742381 hasConceptScore W2025742381C58103923 @default.
- W2025742381 hasConceptScore W2025742381C60908668 @default.
- W2025742381 hasLocation W20257423811 @default.
- W2025742381 hasOpenAccess W2025742381 @default.
- W2025742381 hasPrimaryLocation W20257423811 @default.
- W2025742381 hasRelatedWork W1964559229 @default.
- W2025742381 hasRelatedWork W1969264269 @default.
- W2025742381 hasRelatedWork W1974314331 @default.
- W2025742381 hasRelatedWork W1995352662 @default.
- W2025742381 hasRelatedWork W2030611398 @default.