Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025764938> ?p ?o ?g. }
- W2025764938 endingPage "127" @default.
- W2025764938 startingPage "116" @default.
- W2025764938 abstract "The shift from model-based approaches to data-driven ones is opening new frontiers in computer vision. Several tasks which required the development of sophisticated parametric models can now be solved through simple algorithms, by offloading the complexity of the task to the amount of available data. However, in order to develop data-driven approaches, it is necessary to have large annotated datasets. Unfortunately, manual labeling of large scale datasets is a complex, error prone and tedious task, especially when dealing with noisy images or with fine-grained visual tasks. In this paper we present an automatic label propagation approach that transfers labels from a small set of manually labeled images to a large set of unlabeled items by means of nearest-neighbor search operating on HoG image descriptors. In particular, we introduce the concept of mutual local similarity between the labeled query image and its nearest neighbors as the condition to be verified for propagating labels. The performance evaluation, carried out on the COREL 5K dataset and on a dataset of 20 million underwater low-quality images, showed how big data combined to simple nonparametric approaches allows to solve effectively complex visual tasks." @default.
- W2025764938 created "2016-06-24" @default.
- W2025764938 creator A5008977904 @default.
- W2025764938 creator A5031450889 @default.
- W2025764938 creator A5064730203 @default.
- W2025764938 creator A5075815307 @default.
- W2025764938 date "2015-02-01" @default.
- W2025764938 modified "2023-09-25" @default.
- W2025764938 title "Nonparametric label propagation using mutual local similarity in nearest neighbors" @default.
- W2025764938 cites W121593998 @default.
- W2025764938 cites W143551758 @default.
- W2025764938 cites W1484654248 @default.
- W2025764938 cites W1522537991 @default.
- W2025764938 cites W1541459201 @default.
- W2025764938 cites W1556531089 @default.
- W2025764938 cites W1589362500 @default.
- W2025764938 cites W1672197616 @default.
- W2025764938 cites W1867323356 @default.
- W2025764938 cites W1877469910 @default.
- W2025764938 cites W189214596 @default.
- W2025764938 cites W190007845 @default.
- W2025764938 cites W1978112828 @default.
- W2025764938 cites W1987946767 @default.
- W2025764938 cites W1992047056 @default.
- W2025764938 cites W2000830496 @default.
- W2025764938 cites W2004646046 @default.
- W2025764938 cites W2017814585 @default.
- W2025764938 cites W2024668293 @default.
- W2025764938 cites W2029205712 @default.
- W2025764938 cites W2042881681 @default.
- W2025764938 cites W2044523229 @default.
- W2025764938 cites W2065296697 @default.
- W2025764938 cites W2090356242 @default.
- W2025764938 cites W2099253838 @default.
- W2025764938 cites W2099907898 @default.
- W2025764938 cites W2108598243 @default.
- W2025764938 cites W2109824782 @default.
- W2025764938 cites W2111284499 @default.
- W2025764938 cites W2112020727 @default.
- W2025764938 cites W2115407997 @default.
- W2025764938 cites W2115461312 @default.
- W2025764938 cites W2115517344 @default.
- W2025764938 cites W2122196799 @default.
- W2025764938 cites W2124509324 @default.
- W2025764938 cites W2125204570 @default.
- W2025764938 cites W2125238156 @default.
- W2025764938 cites W2127218421 @default.
- W2025764938 cites W2127411609 @default.
- W2025764938 cites W2128017662 @default.
- W2025764938 cites W2130398002 @default.
- W2025764938 cites W2131082717 @default.
- W2025764938 cites W2133510502 @default.
- W2025764938 cites W2133566592 @default.
- W2025764938 cites W2134514757 @default.
- W2025764938 cites W2135596962 @default.
- W2025764938 cites W2137471889 @default.
- W2025764938 cites W2137918516 @default.
- W2025764938 cites W2141362318 @default.
- W2025764938 cites W2145065594 @default.
- W2025764938 cites W2145607950 @default.
- W2025764938 cites W2145725688 @default.
- W2025764938 cites W2146024151 @default.
- W2025764938 cites W2147647517 @default.
- W2025764938 cites W2148809531 @default.
- W2025764938 cites W2150692003 @default.
- W2025764938 cites W2151103935 @default.
- W2025764938 cites W2154956324 @default.
- W2025764938 cites W2156336347 @default.
- W2025764938 cites W2157092487 @default.
- W2025764938 cites W2161969291 @default.
- W2025764938 cites W2166742463 @default.
- W2025764938 cites W2238624099 @default.
- W2025764938 cites W2427881153 @default.
- W2025764938 cites W2536305071 @default.
- W2025764938 cites W2548161598 @default.
- W2025764938 cites W2913932916 @default.
- W2025764938 doi "https://doi.org/10.1016/j.cviu.2014.06.005" @default.
- W2025764938 hasPublicationYear "2015" @default.
- W2025764938 type Work @default.
- W2025764938 sameAs 2025764938 @default.
- W2025764938 citedByCount "5" @default.
- W2025764938 countsByYear W20257649382014 @default.
- W2025764938 countsByYear W20257649382015 @default.
- W2025764938 countsByYear W20257649382016 @default.
- W2025764938 crossrefType "journal-article" @default.
- W2025764938 hasAuthorship W2025764938A5008977904 @default.
- W2025764938 hasAuthorship W2025764938A5031450889 @default.
- W2025764938 hasAuthorship W2025764938A5064730203 @default.
- W2025764938 hasAuthorship W2025764938A5075815307 @default.
- W2025764938 hasConcept C102366305 @default.
- W2025764938 hasConcept C103278499 @default.
- W2025764938 hasConcept C105795698 @default.
- W2025764938 hasConcept C111472728 @default.
- W2025764938 hasConcept C113238511 @default.
- W2025764938 hasConcept C115961682 @default.
- W2025764938 hasConcept C116738811 @default.
- W2025764938 hasConcept C117251300 @default.
- W2025764938 hasConcept C119857082 @default.