Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025825535> ?p ?o ?g. }
- W2025825535 endingPage "1258" @default.
- W2025825535 startingPage "1242" @default.
- W2025825535 abstract "Gene regulation is a complicated process. The interaction of many genes and their products forms an intricate biological network. Identification of this dynamic network will help us understand the biological processes in a systematic way. However, the construction of a dynamic network is very challenging for a high-dimensional system. In this article we propose to use a set of ordinary differential equations (ODE), coupled with dimensional reduction by clustering and mixed-effects modeling techniques, to model the dynamic gene regulatory network (GRN). The ODE models allow us to quantify both positive and negative gene regulation as well as feedback effects of genes in a functional module on the dynamic expression changes of genes in another functional module, which results in a directed graph network. A five-step procedure—clustering, smoothing, regulation identification, parameter estimates refining, and function enrichment analysis (CSIEF)—is developed to identify the ODE-based dynamic GRN. In the proposed CSIEF procedure, a series of cutting-edge statistical methods and techniques are employed, that include nonparametric mixed-effects models with a mixture distribution for clustering, nonparametric mixed-effects smoothing-based methods for ODE models, the smoothly clipped absolute deviation (SCAD)-based variable selection, and stochastic approximation EM (SAEM) approach for mixed-effects ODE model parameter estimation. The key step, the SCAD-based variable selection, is justified by investigating its asymptotic properties and validated by Monte Carlo simulations. We apply the proposed method to identify the dynamic GRN for yeast cell cycle progression data. We are able to annotate the identified modules through function enrichment analyses. Some interesting biological findings are discussed. The proposed procedure is a promising tool for constructing a general dynamic GRN and more complicated dynamic networks. This article has supplementary material online." @default.
- W2025825535 created "2016-06-24" @default.
- W2025825535 creator A5045155778 @default.
- W2025825535 creator A5050075582 @default.
- W2025825535 creator A5082318113 @default.
- W2025825535 creator A5085374974 @default.
- W2025825535 date "2011-12-01" @default.
- W2025825535 modified "2023-09-28" @default.
- W2025825535 title "High-Dimensional ODEs Coupled With Mixed-Effects Modeling Techniques for Dynamic Gene Regulatory Network Identification" @default.
- W2025825535 cites W1575978816 @default.
- W2025825535 cites W1589133845 @default.
- W2025825535 cites W1596437242 @default.
- W2025825535 cites W1963522244 @default.
- W2025825535 cites W1963713509 @default.
- W2025825535 cites W1971224531 @default.
- W2025825535 cites W1973249296 @default.
- W2025825535 cites W1976706787 @default.
- W2025825535 cites W1988997815 @default.
- W2025825535 cites W1989466762 @default.
- W2025825535 cites W1991071089 @default.
- W2025825535 cites W1997792006 @default.
- W2025825535 cites W2020925091 @default.
- W2025825535 cites W2033284638 @default.
- W2025825535 cites W2033902994 @default.
- W2025825535 cites W2037893131 @default.
- W2025825535 cites W2040305816 @default.
- W2025825535 cites W2045775570 @default.
- W2025825535 cites W2046538693 @default.
- W2025825535 cites W2049002789 @default.
- W2025825535 cites W2049047355 @default.
- W2025825535 cites W2051866702 @default.
- W2025825535 cites W2055742299 @default.
- W2025825535 cites W2057682568 @default.
- W2025825535 cites W2058221907 @default.
- W2025825535 cites W2059898847 @default.
- W2025825535 cites W2064533818 @default.
- W2025825535 cites W2067957566 @default.
- W2025825535 cites W2072706864 @default.
- W2025825535 cites W2073506826 @default.
- W2025825535 cites W2073738917 @default.
- W2025825535 cites W2074682976 @default.
- W2025825535 cites W2094547604 @default.
- W2025825535 cites W2100932663 @default.
- W2025825535 cites W2102471334 @default.
- W2025825535 cites W2103017472 @default.
- W2025825535 cites W2103453943 @default.
- W2025825535 cites W2106045204 @default.
- W2025825535 cites W2113654344 @default.
- W2025825535 cites W2117625122 @default.
- W2025825535 cites W2122342005 @default.
- W2025825535 cites W2124025352 @default.
- W2025825535 cites W2126602684 @default.
- W2025825535 cites W2132204276 @default.
- W2025825535 cites W2134314273 @default.
- W2025825535 cites W2136988691 @default.
- W2025825535 cites W2142400903 @default.
- W2025825535 cites W2144148350 @default.
- W2025825535 cites W2144510733 @default.
- W2025825535 cites W2149566602 @default.
- W2025825535 cites W2156004795 @default.
- W2025825535 cites W2162142896 @default.
- W2025825535 cites W2166106382 @default.
- W2025825535 cites W2611370172 @default.
- W2025825535 cites W3098834468 @default.
- W2025825535 cites W4239329468 @default.
- W2025825535 cites W4240385847 @default.
- W2025825535 doi "https://doi.org/10.1198/jasa.2011.ap10194" @default.
- W2025825535 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3509540" @default.
- W2025825535 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23204614" @default.
- W2025825535 hasPublicationYear "2011" @default.
- W2025825535 type Work @default.
- W2025825535 sameAs 2025825535 @default.
- W2025825535 citedByCount "59" @default.
- W2025825535 countsByYear W20258255352013 @default.
- W2025825535 countsByYear W20258255352014 @default.
- W2025825535 countsByYear W20258255352015 @default.
- W2025825535 countsByYear W20258255352016 @default.
- W2025825535 countsByYear W20258255352017 @default.
- W2025825535 countsByYear W20258255352018 @default.
- W2025825535 countsByYear W20258255352019 @default.
- W2025825535 countsByYear W20258255352020 @default.
- W2025825535 countsByYear W20258255352021 @default.
- W2025825535 countsByYear W20258255352022 @default.
- W2025825535 countsByYear W20258255352023 @default.
- W2025825535 crossrefType "journal-article" @default.
- W2025825535 hasAuthorship W2025825535A5045155778 @default.
- W2025825535 hasAuthorship W2025825535A5050075582 @default.
- W2025825535 hasAuthorship W2025825535A5082318113 @default.
- W2025825535 hasAuthorship W2025825535A5085374974 @default.
- W2025825535 hasBestOaLocation W20258255352 @default.
- W2025825535 hasConcept C102366305 @default.
- W2025825535 hasConcept C104317684 @default.
- W2025825535 hasConcept C105795698 @default.
- W2025825535 hasConcept C116834253 @default.
- W2025825535 hasConcept C119857082 @default.
- W2025825535 hasConcept C126255220 @default.
- W2025825535 hasConcept C134306372 @default.
- W2025825535 hasConcept C150194340 @default.