Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025839902> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2025839902 abstract "The traditional H-K clustering algorithm can solve the randomness and apriority of the initial centers of K-means clustering algorithm. However, it will lead to a dimensional disaster problem when apply to high dimensional dataset clustering due to its high computational complexity. Clustering ensemble exerts ensemble learning technique to get a better clustering result through learning merged data set of multiple clustering results. The objective of this paper is to improve the performance of traditional H-K clustering algorithm in high dimensional datasets. Using ensemble learning, a new clustering algorithm is proposed named EPCAHK (Ensemble Principle Component Analysis Hierarchical K-means Clustering algorithm). In the EPCAHK algorithm, the high dimensional dataset is mapped into a low dimensional space using PCA method firstly. Subsequently, the clustering results of the hierarchical stage for obtaining initial information (e.g., the cluster number or the initial clustering centers) are integrated by using the min-transitive closure method. Finally, the final clustering result is achieved by using K-means clustering algorithm based on the ensemble clustering results above. The experimental results indicate that comparing to the traditional H-K clustering algorithm, the EPCAHK obtains a better clustering result. The average accuracy of the clustering results can reach up to 90% or above, and the stability for the large high dimensional dataset is also improved." @default.
- W2025839902 created "2016-06-24" @default.
- W2025839902 creator A5032764121 @default.
- W2025839902 creator A5055522658 @default.
- W2025839902 creator A5058622212 @default.
- W2025839902 creator A5064064630 @default.
- W2025839902 creator A5086358231 @default.
- W2025839902 creator A5091893934 @default.
- W2025839902 date "2013-01-01" @default.
- W2025839902 modified "2023-09-22" @default.
- W2025839902 title "A H-K clustering algorithm based on ensemble learning" @default.
- W2025839902 doi "https://doi.org/10.1049/cp.2013.1976" @default.
- W2025839902 hasPublicationYear "2013" @default.
- W2025839902 type Work @default.
- W2025839902 sameAs 2025839902 @default.
- W2025839902 citedByCount "4" @default.
- W2025839902 countsByYear W20258399022014 @default.
- W2025839902 countsByYear W20258399022016 @default.
- W2025839902 countsByYear W20258399022017 @default.
- W2025839902 countsByYear W20258399022020 @default.
- W2025839902 crossrefType "proceedings-article" @default.
- W2025839902 hasAuthorship W2025839902A5032764121 @default.
- W2025839902 hasAuthorship W2025839902A5055522658 @default.
- W2025839902 hasAuthorship W2025839902A5058622212 @default.
- W2025839902 hasAuthorship W2025839902A5064064630 @default.
- W2025839902 hasAuthorship W2025839902A5086358231 @default.
- W2025839902 hasAuthorship W2025839902A5091893934 @default.
- W2025839902 hasConcept C104047586 @default.
- W2025839902 hasConcept C11413529 @default.
- W2025839902 hasConcept C115328559 @default.
- W2025839902 hasConcept C124101348 @default.
- W2025839902 hasConcept C149872217 @default.
- W2025839902 hasConcept C153180895 @default.
- W2025839902 hasConcept C154945302 @default.
- W2025839902 hasConcept C17212007 @default.
- W2025839902 hasConcept C184509293 @default.
- W2025839902 hasConcept C193143536 @default.
- W2025839902 hasConcept C22648726 @default.
- W2025839902 hasConcept C27964816 @default.
- W2025839902 hasConcept C33704608 @default.
- W2025839902 hasConcept C33923547 @default.
- W2025839902 hasConcept C41008148 @default.
- W2025839902 hasConcept C73555534 @default.
- W2025839902 hasConcept C94641424 @default.
- W2025839902 hasConceptScore W2025839902C104047586 @default.
- W2025839902 hasConceptScore W2025839902C11413529 @default.
- W2025839902 hasConceptScore W2025839902C115328559 @default.
- W2025839902 hasConceptScore W2025839902C124101348 @default.
- W2025839902 hasConceptScore W2025839902C149872217 @default.
- W2025839902 hasConceptScore W2025839902C153180895 @default.
- W2025839902 hasConceptScore W2025839902C154945302 @default.
- W2025839902 hasConceptScore W2025839902C17212007 @default.
- W2025839902 hasConceptScore W2025839902C184509293 @default.
- W2025839902 hasConceptScore W2025839902C193143536 @default.
- W2025839902 hasConceptScore W2025839902C22648726 @default.
- W2025839902 hasConceptScore W2025839902C27964816 @default.
- W2025839902 hasConceptScore W2025839902C33704608 @default.
- W2025839902 hasConceptScore W2025839902C33923547 @default.
- W2025839902 hasConceptScore W2025839902C41008148 @default.
- W2025839902 hasConceptScore W2025839902C73555534 @default.
- W2025839902 hasConceptScore W2025839902C94641424 @default.
- W2025839902 hasLocation W20258399021 @default.
- W2025839902 hasOpenAccess W2025839902 @default.
- W2025839902 hasPrimaryLocation W20258399021 @default.
- W2025839902 hasRelatedWork W1597284285 @default.
- W2025839902 hasRelatedWork W1970820654 @default.
- W2025839902 hasRelatedWork W2000352630 @default.
- W2025839902 hasRelatedWork W2010426953 @default.
- W2025839902 hasRelatedWork W2022640019 @default.
- W2025839902 hasRelatedWork W2027892333 @default.
- W2025839902 hasRelatedWork W2043819533 @default.
- W2025839902 hasRelatedWork W2103650652 @default.
- W2025839902 hasRelatedWork W2129809485 @default.
- W2025839902 hasRelatedWork W2147460998 @default.
- W2025839902 hasRelatedWork W2188877168 @default.
- W2025839902 hasRelatedWork W2328304128 @default.
- W2025839902 hasRelatedWork W2369333922 @default.
- W2025839902 hasRelatedWork W2374388662 @default.
- W2025839902 hasRelatedWork W2379398902 @default.
- W2025839902 hasRelatedWork W2380384563 @default.
- W2025839902 hasRelatedWork W2392053082 @default.
- W2025839902 hasRelatedWork W2393707058 @default.
- W2025839902 hasRelatedWork W3010868552 @default.
- W2025839902 hasRelatedWork W3127404219 @default.
- W2025839902 isParatext "false" @default.
- W2025839902 isRetracted "false" @default.
- W2025839902 magId "2025839902" @default.
- W2025839902 workType "article" @default.