Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025932664> ?p ?o ?g. }
- W2025932664 endingPage "1010" @default.
- W2025932664 startingPage "999" @default.
- W2025932664 abstract "Spatial interpolation methods are frequently used to estimate values of meteorological data in locations where they are not measured. However, very little research has been investigated the relative performance of different interpolation methods in meteorological data of Xinjiang Uygur Autonomous Region (Xinjiang). Actually, it has importantly practical significance to as far as possibly improve the accuracy of interpolation results for meteorological data, especially in mountainous Xinjiang. There- fore, this paper focuses on the performance of different spatial interpolation methods for monthly temperature data in Xinjiang. The daily observed data of temperature are collected from 38 meteorological stations for the period 1960- 2004. Inverse distance weighting (IDW), ordinary kriging (OK), temperature lapse rate method (TLR) and multiple linear regressions (MLR) are selected as interpolated methods. Two rasterized methods, multiple regression plus space residual error and directly interpolated observed temperature (DIOT) data, are used to analyze and compare the performance of these interpolation methods respectively. Moreover, cross-validation is used to evaluate the performance of different spatial interpolation methods. The results are as follows: 1) The method of DIOT is unsuitable for the study area in this paper. 2) It is important to process the observed data by local regression model before the spatial interpolation. 3) The MLR-IDW is the optimum spatial interpolation method for the monthly mean temperature based on cross-validation. For the authors, the reliability of results and the influence of measurement accuracy, density, distribution and spatial variability on the accuracy of the interpolation methods will be tested and analyzed in the future." @default.
- W2025932664 created "2016-06-24" @default.
- W2025932664 creator A5008171524 @default.
- W2025932664 creator A5023919188 @default.
- W2025932664 creator A5067080066 @default.
- W2025932664 creator A5070913035 @default.
- W2025932664 creator A5082302473 @default.
- W2025932664 creator A5087300057 @default.
- W2025932664 date "2011-01-01" @default.
- W2025932664 modified "2023-10-14" @default.
- W2025932664 title "Analysis and comparison of spatial interpolation methods for temperature data in Xinjiang Uygur Autonomous Region, China" @default.
- W2025932664 cites W174107858 @default.
- W2025932664 cites W1973110714 @default.
- W2025932664 cites W1978716844 @default.
- W2025932664 cites W1989675897 @default.
- W2025932664 cites W1994731825 @default.
- W2025932664 cites W1995256794 @default.
- W2025932664 cites W1998001441 @default.
- W2025932664 cites W2019819708 @default.
- W2025932664 cites W2027443195 @default.
- W2025932664 cites W2029147576 @default.
- W2025932664 cites W2031249902 @default.
- W2025932664 cites W2045600648 @default.
- W2025932664 cites W2063173996 @default.
- W2025932664 cites W2065513172 @default.
- W2025932664 cites W2083588554 @default.
- W2025932664 cites W2092143749 @default.
- W2025932664 cites W2102994598 @default.
- W2025932664 cites W2105886055 @default.
- W2025932664 cites W2109369271 @default.
- W2025932664 cites W2109637933 @default.
- W2025932664 cites W2117309700 @default.
- W2025932664 cites W2137542121 @default.
- W2025932664 cites W2155151713 @default.
- W2025932664 cites W2170163677 @default.
- W2025932664 cites W2171559397 @default.
- W2025932664 doi "https://doi.org/10.4236/ns.2011.312125" @default.
- W2025932664 hasPublicationYear "2011" @default.
- W2025932664 type Work @default.
- W2025932664 sameAs 2025932664 @default.
- W2025932664 citedByCount "22" @default.
- W2025932664 countsByYear W20259326642012 @default.
- W2025932664 countsByYear W20259326642013 @default.
- W2025932664 countsByYear W20259326642014 @default.
- W2025932664 countsByYear W20259326642015 @default.
- W2025932664 countsByYear W20259326642016 @default.
- W2025932664 countsByYear W20259326642017 @default.
- W2025932664 countsByYear W20259326642018 @default.
- W2025932664 countsByYear W20259326642019 @default.
- W2025932664 countsByYear W20259326642020 @default.
- W2025932664 countsByYear W20259326642021 @default.
- W2025932664 countsByYear W20259326642022 @default.
- W2025932664 countsByYear W20259326642023 @default.
- W2025932664 crossrefType "journal-article" @default.
- W2025932664 hasAuthorship W2025932664A5008171524 @default.
- W2025932664 hasAuthorship W2025932664A5023919188 @default.
- W2025932664 hasAuthorship W2025932664A5067080066 @default.
- W2025932664 hasAuthorship W2025932664A5070913035 @default.
- W2025932664 hasAuthorship W2025932664A5082302473 @default.
- W2025932664 hasAuthorship W2025932664A5087300057 @default.
- W2025932664 hasBestOaLocation W20259326641 @default.
- W2025932664 hasConcept C104114177 @default.
- W2025932664 hasConcept C105795698 @default.
- W2025932664 hasConcept C126838900 @default.
- W2025932664 hasConcept C137800194 @default.
- W2025932664 hasConcept C154945302 @default.
- W2025932664 hasConcept C159620131 @default.
- W2025932664 hasConcept C183115368 @default.
- W2025932664 hasConcept C203332170 @default.
- W2025932664 hasConcept C205203396 @default.
- W2025932664 hasConcept C33923547 @default.
- W2025932664 hasConcept C39432304 @default.
- W2025932664 hasConcept C41008148 @default.
- W2025932664 hasConcept C47872207 @default.
- W2025932664 hasConcept C71924100 @default.
- W2025932664 hasConcept C81692654 @default.
- W2025932664 hasConceptScore W2025932664C104114177 @default.
- W2025932664 hasConceptScore W2025932664C105795698 @default.
- W2025932664 hasConceptScore W2025932664C126838900 @default.
- W2025932664 hasConceptScore W2025932664C137800194 @default.
- W2025932664 hasConceptScore W2025932664C154945302 @default.
- W2025932664 hasConceptScore W2025932664C159620131 @default.
- W2025932664 hasConceptScore W2025932664C183115368 @default.
- W2025932664 hasConceptScore W2025932664C203332170 @default.
- W2025932664 hasConceptScore W2025932664C205203396 @default.
- W2025932664 hasConceptScore W2025932664C33923547 @default.
- W2025932664 hasConceptScore W2025932664C39432304 @default.
- W2025932664 hasConceptScore W2025932664C41008148 @default.
- W2025932664 hasConceptScore W2025932664C47872207 @default.
- W2025932664 hasConceptScore W2025932664C71924100 @default.
- W2025932664 hasConceptScore W2025932664C81692654 @default.
- W2025932664 hasIssue "12" @default.
- W2025932664 hasLocation W20259326641 @default.
- W2025932664 hasOpenAccess W2025932664 @default.
- W2025932664 hasPrimaryLocation W20259326641 @default.
- W2025932664 hasRelatedWork W2357092082 @default.
- W2025932664 hasRelatedWork W2367908207 @default.
- W2025932664 hasRelatedWork W2512393538 @default.