Matches in SemOpenAlex for { <https://semopenalex.org/work/W2025972443> ?p ?o ?g. }
- W2025972443 endingPage "15603" @default.
- W2025972443 startingPage "15586" @default.
- W2025972443 abstract "The threshold field ${mathit{E}}_{mathit{T}}$ for conduction by the charge-density wave (CDW) which forms in ${mathrm{NbSe}}_{3}$ at 144 K has been studied in specimens containing about 1% of intercalated In. The In increases ${mathit{E}}_{mathit{T}}$ by an amount ensuremath{delta}${mathit{E}}_{mathit{T}}$, which is greatest when the CDW is at rest, and can be reduced almost to zero by its continuous motion. The time taken for ensuremath{delta}${mathit{E}}_{mathit{T}}$ to adjust to a change in the state of the CDW (of the order of 1s at 115 K) varies as exp(ensuremath{theta}/T), where T is the temperature and ensuremath{theta}ensuremath{approxeq}3200 K. In a specimen which exhibits ``mode locking'' between an applied alternating field and the frequency ensuremath{nu} of the quasiperiodic component of the current ${mathit{I}}_{mathit{C}}$ carried by the CDW, the development of ensuremath{delta}${mathit{E}}_{mathit{T}}$ is accompanied by a decrease in the ratio ${mathit{I}}_{mathit{C}}$/ensuremath{nu}. The pinning giving rise to ensuremath{delta}${mathit{E}}_{mathit{T}}$ is attributed to the minimization of free energy through the thermally activated diffusion of In in a potential exerted by the CDW. The greatest ensuremath{delta}${mathit{E}}_{mathit{T}}$ develops in the steady potential exerted by the CDW at rest; when the CDW is in motion the potential varies periodically at a rate fast compared with the diffusion, and ensuremath{delta}${mathit{E}}_{mathit{T}}$, which responds to its mean value, is reduced accordingly. Various couplings between the In and CDW which might provide the potential are examined, and it is concluded that the only coupling consistent with the observed time dependence of ensuremath{delta}${mathit{E}}_{mathit{T}}$ is that between the In and the strain field of dislocations in the CDW. To account for the behavior of ensuremath{delta}${mathit{E}}_{mathit{T}}$, it is necessary to assume that the dislocations are on the boundaries of localized regions of the CDW which remain pinned when the rest is in motion. The behavior of ${mathit{I}}_{mathit{C}}$/ensuremath{nu} shows that such immobile regions expand as ensuremath{delta}${mathit{E}}_{mathit{T}}$ develops, and thus confirms their existence in a CDW which otherwise moves coherently. The coexistence of stationary and moving regions clearly conflicts with the model of Fukuyama, Lee, and Rice (FLR), which treats the CDW as an elastic medium, and is widely accepted as applying to ${mathrm{NbSe}}_{3}$ except when macroscopic crystal defects are present. The evidence of stationary regions in every specimen examined, even when perfect enough to exhibit complete mode locking, suggests that they are intrinsic to the depinning of a weakly pinned CDW from randomly distributed impurities. A modification of the FLR model is proposed, in which immobile regions appear as a result of the thermal nucleation of dislocation loops where large stresses arise from the nonuniformity of the pinning. textcopyright{} 1996 The American Physical Society." @default.
- W2025972443 created "2016-06-24" @default.
- W2025972443 creator A5003409710 @default.
- W2025972443 date "1996-06-15" @default.
- W2025972443 modified "2023-09-27" @default.
- W2025972443 title "Dislocations and the motion of weakly pinned charge-density waves: Experiments on niobium triselenide containing mobile indium impurities" @default.
- W2025972443 cites W1628435581 @default.
- W2025972443 cites W1969667739 @default.
- W2025972443 cites W1971892403 @default.
- W2025972443 cites W1977844583 @default.
- W2025972443 cites W1981528715 @default.
- W2025972443 cites W1983684520 @default.
- W2025972443 cites W1991595001 @default.
- W2025972443 cites W1997442079 @default.
- W2025972443 cites W2008713738 @default.
- W2025972443 cites W2008820099 @default.
- W2025972443 cites W2011048158 @default.
- W2025972443 cites W2013125985 @default.
- W2025972443 cites W2017894952 @default.
- W2025972443 cites W2018648487 @default.
- W2025972443 cites W2026892485 @default.
- W2025972443 cites W2037395940 @default.
- W2025972443 cites W2042064670 @default.
- W2025972443 cites W2042600782 @default.
- W2025972443 cites W2043810134 @default.
- W2025972443 cites W2044391124 @default.
- W2025972443 cites W2046347461 @default.
- W2025972443 cites W2049171024 @default.
- W2025972443 cites W2049180159 @default.
- W2025972443 cites W2055572908 @default.
- W2025972443 cites W2056235872 @default.
- W2025972443 cites W2060480267 @default.
- W2025972443 cites W2061428165 @default.
- W2025972443 cites W2074163623 @default.
- W2025972443 cites W2081028769 @default.
- W2025972443 cites W2081272843 @default.
- W2025972443 cites W2081837785 @default.
- W2025972443 cites W2091286255 @default.
- W2025972443 cites W2091287830 @default.
- W2025972443 cites W2092558820 @default.
- W2025972443 cites W2144123722 @default.
- W2025972443 cites W583119669 @default.
- W2025972443 cites W72561172 @default.
- W2025972443 doi "https://doi.org/10.1103/physrevb.53.15586" @default.
- W2025972443 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9983391" @default.
- W2025972443 hasPublicationYear "1996" @default.
- W2025972443 type Work @default.
- W2025972443 sameAs 2025972443 @default.
- W2025972443 citedByCount "12" @default.
- W2025972443 countsByYear W20259724432015 @default.
- W2025972443 countsByYear W20259724432019 @default.
- W2025972443 countsByYear W20259724432020 @default.
- W2025972443 countsByYear W20259724432021 @default.
- W2025972443 countsByYear W20259724432022 @default.
- W2025972443 countsByYear W20259724432023 @default.
- W2025972443 crossrefType "journal-article" @default.
- W2025972443 hasAuthorship W2025972443A5003409710 @default.
- W2025972443 hasConcept C10138342 @default.
- W2025972443 hasConcept C121332964 @default.
- W2025972443 hasConcept C162324750 @default.
- W2025972443 hasConcept C178790620 @default.
- W2025972443 hasConcept C182306322 @default.
- W2025972443 hasConcept C185592680 @default.
- W2025972443 hasConcept C191897082 @default.
- W2025972443 hasConcept C192562407 @default.
- W2025972443 hasConcept C26873012 @default.
- W2025972443 hasConcept C2778279818 @default.
- W2025972443 hasConcept C2780525273 @default.
- W2025972443 hasConcept C507968137 @default.
- W2025972443 hasConcept C54101563 @default.
- W2025972443 hasConcept C55637507 @default.
- W2025972443 hasConceptScore W2025972443C10138342 @default.
- W2025972443 hasConceptScore W2025972443C121332964 @default.
- W2025972443 hasConceptScore W2025972443C162324750 @default.
- W2025972443 hasConceptScore W2025972443C178790620 @default.
- W2025972443 hasConceptScore W2025972443C182306322 @default.
- W2025972443 hasConceptScore W2025972443C185592680 @default.
- W2025972443 hasConceptScore W2025972443C191897082 @default.
- W2025972443 hasConceptScore W2025972443C192562407 @default.
- W2025972443 hasConceptScore W2025972443C26873012 @default.
- W2025972443 hasConceptScore W2025972443C2778279818 @default.
- W2025972443 hasConceptScore W2025972443C2780525273 @default.
- W2025972443 hasConceptScore W2025972443C507968137 @default.
- W2025972443 hasConceptScore W2025972443C54101563 @default.
- W2025972443 hasConceptScore W2025972443C55637507 @default.
- W2025972443 hasIssue "23" @default.
- W2025972443 hasLocation W20259724431 @default.
- W2025972443 hasLocation W20259724432 @default.
- W2025972443 hasOpenAccess W2025972443 @default.
- W2025972443 hasPrimaryLocation W20259724431 @default.
- W2025972443 hasRelatedWork W1499614001 @default.
- W2025972443 hasRelatedWork W1964767679 @default.
- W2025972443 hasRelatedWork W1969022086 @default.
- W2025972443 hasRelatedWork W1972361626 @default.
- W2025972443 hasRelatedWork W2011902619 @default.
- W2025972443 hasRelatedWork W2056892828 @default.
- W2025972443 hasRelatedWork W2091936403 @default.
- W2025972443 hasRelatedWork W2112554136 @default.