Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026118200> ?p ?o ?g. }
- W2026118200 abstract "We develop a flexible framework for modeling high-dimensional imaging data observed longitudinally. The approach decomposes the observed variability of repeatedly measured high-dimensional observations into three additive components: a subject-specific imaging random intercept that quantifies the cross-sectional variability, a subject-specific imaging slope that quantifies the dynamic irreversible deformation over multiple realizations, and a subject-visit-specific imaging deviation that quantifies exchangeable effects between visits. The proposed method is very fast, scalable to studies including ultrahigh-dimensional data, and can easily be adapted to and executed on modest computing infrastructures. The method is applied to the longitudinal analysis of diffusion tensor imaging (DTI) data of the corpus callosum of multiple sclerosis (MS) subjects. The study includes $176$ subjects observed at $466$ visits. For each subject and visit the study contains a registered DTI scan of the corpus callosum at roughly 30,000 voxels." @default.
- W2026118200 created "2016-06-24" @default.
- W2026118200 creator A5012738138 @default.
- W2026118200 creator A5016065135 @default.
- W2026118200 creator A5024904743 @default.
- W2026118200 creator A5044021585 @default.
- W2026118200 creator A5057578473 @default.
- W2026118200 creator A5089030792 @default.
- W2026118200 date "2014-12-01" @default.
- W2026118200 modified "2023-10-14" @default.
- W2026118200 title "Longitudinal high-dimensional principal components analysis with application to diffusion tensor imaging of multiple sclerosis" @default.
- W2026118200 cites W1966252828 @default.
- W2026118200 cites W1978085049 @default.
- W2026118200 cites W1979868459 @default.
- W2026118200 cites W1981015491 @default.
- W2026118200 cites W1982959792 @default.
- W2026118200 cites W1998577249 @default.
- W2026118200 cites W2010498655 @default.
- W2026118200 cites W2024251810 @default.
- W2026118200 cites W2025071037 @default.
- W2026118200 cites W2026118200 @default.
- W2026118200 cites W2027124963 @default.
- W2026118200 cites W2029885439 @default.
- W2026118200 cites W2031540762 @default.
- W2026118200 cites W2037153463 @default.
- W2026118200 cites W2056362049 @default.
- W2026118200 cites W2066270292 @default.
- W2026118200 cites W2067168878 @default.
- W2026118200 cites W2070330801 @default.
- W2026118200 cites W2071415177 @default.
- W2026118200 cites W2083534979 @default.
- W2026118200 cites W2106575405 @default.
- W2026118200 cites W2121451737 @default.
- W2026118200 cites W2127889169 @default.
- W2026118200 cites W2128796916 @default.
- W2026118200 cites W2136261709 @default.
- W2026118200 cites W2138071406 @default.
- W2026118200 cites W2141681031 @default.
- W2026118200 cites W2143241741 @default.
- W2026118200 cites W2148071000 @default.
- W2026118200 cites W2160243107 @default.
- W2026118200 cites W2506055033 @default.
- W2026118200 cites W2949537047 @default.
- W2026118200 cites W3099833362 @default.
- W2026118200 cites W4233367026 @default.
- W2026118200 cites W4301491118 @default.
- W2026118200 doi "https://doi.org/10.1214/14-aoas748" @default.
- W2026118200 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25663955" @default.
- W2026118200 hasPublicationYear "2014" @default.
- W2026118200 type Work @default.
- W2026118200 sameAs 2026118200 @default.
- W2026118200 citedByCount "30" @default.
- W2026118200 countsByYear W20261182002014 @default.
- W2026118200 countsByYear W20261182002015 @default.
- W2026118200 countsByYear W20261182002016 @default.
- W2026118200 countsByYear W20261182002017 @default.
- W2026118200 countsByYear W20261182002018 @default.
- W2026118200 countsByYear W20261182002019 @default.
- W2026118200 countsByYear W20261182002020 @default.
- W2026118200 countsByYear W20261182002021 @default.
- W2026118200 countsByYear W20261182002022 @default.
- W2026118200 countsByYear W20261182002023 @default.
- W2026118200 crossrefType "journal-article" @default.
- W2026118200 hasAuthorship W2026118200A5012738138 @default.
- W2026118200 hasAuthorship W2026118200A5016065135 @default.
- W2026118200 hasAuthorship W2026118200A5024904743 @default.
- W2026118200 hasAuthorship W2026118200A5044021585 @default.
- W2026118200 hasAuthorship W2026118200A5057578473 @default.
- W2026118200 hasAuthorship W2026118200A5089030792 @default.
- W2026118200 hasBestOaLocation W20261182001 @default.
- W2026118200 hasConcept C126838900 @default.
- W2026118200 hasConcept C143409427 @default.
- W2026118200 hasConcept C149550507 @default.
- W2026118200 hasConcept C153180895 @default.
- W2026118200 hasConcept C154945302 @default.
- W2026118200 hasConcept C155281189 @default.
- W2026118200 hasConcept C15744967 @default.
- W2026118200 hasConcept C169760540 @default.
- W2026118200 hasConcept C202444582 @default.
- W2026118200 hasConcept C2778183499 @default.
- W2026118200 hasConcept C33923547 @default.
- W2026118200 hasConcept C41008148 @default.
- W2026118200 hasConcept C54170458 @default.
- W2026118200 hasConcept C71924100 @default.
- W2026118200 hasConceptScore W2026118200C126838900 @default.
- W2026118200 hasConceptScore W2026118200C143409427 @default.
- W2026118200 hasConceptScore W2026118200C149550507 @default.
- W2026118200 hasConceptScore W2026118200C153180895 @default.
- W2026118200 hasConceptScore W2026118200C154945302 @default.
- W2026118200 hasConceptScore W2026118200C155281189 @default.
- W2026118200 hasConceptScore W2026118200C15744967 @default.
- W2026118200 hasConceptScore W2026118200C169760540 @default.
- W2026118200 hasConceptScore W2026118200C202444582 @default.
- W2026118200 hasConceptScore W2026118200C2778183499 @default.
- W2026118200 hasConceptScore W2026118200C33923547 @default.
- W2026118200 hasConceptScore W2026118200C41008148 @default.
- W2026118200 hasConceptScore W2026118200C54170458 @default.
- W2026118200 hasConceptScore W2026118200C71924100 @default.
- W2026118200 hasIssue "4" @default.
- W2026118200 hasLocation W20261182001 @default.