Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026151704> ?p ?o ?g. }
- W2026151704 endingPage "1029" @default.
- W2026151704 startingPage "1017" @default.
- W2026151704 abstract "Deterministic constructions of measurement matrices in compressed sensing (CS) are considered in this paper. The constructions are inspired by the recent discovery of Dimakis, Smarandache and Vontobel which says that parity-check matrices of good low-density parity-check (LDPC) codes can be used as provably good measurement matrices for compressed sensing under l1-minimization. The performance of the proposed binary measurement matrices is mainly theoretically analyzed with the help of the analyzing methods and results from (finite geometry) LDPC codes. Particularly, several lower bounds of the spark (i.e., the smallest number of columns that are linearly dependent, which totally characterizes the recovery performance of l0-minimization) of general binary matrices and finite geometry matrices are obtained and they improve the previously known results in most cases. Simulation results show that the proposed matrices perform comparably to, sometimes even better than, the corresponding Gaussian random matrices. Moreover, the proposed matrices are sparse, binary, and most of them have cyclic or quasi-cyclic structure, which will make the hardware realization convenient and easy." @default.
- W2026151704 created "2016-06-24" @default.
- W2026151704 creator A5022672030 @default.
- W2026151704 creator A5023497829 @default.
- W2026151704 creator A5033421780 @default.
- W2026151704 creator A5034104790 @default.
- W2026151704 date "2015-02-01" @default.
- W2026151704 modified "2023-10-03" @default.
- W2026151704 title "Deterministic Constructions of Binary Measurement Matrices From Finite Geometry" @default.
- W2026151704 cites W1630192938 @default.
- W2026151704 cites W1964402820 @default.
- W2026151704 cites W1966655654 @default.
- W2026151704 cites W1971402995 @default.
- W2026151704 cites W1985324531 @default.
- W2026151704 cites W1992410340 @default.
- W2026151704 cites W1996836549 @default.
- W2026151704 cites W2000150201 @default.
- W2026151704 cites W2009581709 @default.
- W2026151704 cites W2018214963 @default.
- W2026151704 cites W2022267471 @default.
- W2026151704 cites W2030449718 @default.
- W2026151704 cites W2046728133 @default.
- W2026151704 cites W2065419703 @default.
- W2026151704 cites W2068136251 @default.
- W2026151704 cites W2082633388 @default.
- W2026151704 cites W2090778665 @default.
- W2026151704 cites W2103300200 @default.
- W2026151704 cites W2110140246 @default.
- W2026151704 cites W2114869758 @default.
- W2026151704 cites W2115139597 @default.
- W2026151704 cites W2119275775 @default.
- W2026151704 cites W2127271355 @default.
- W2026151704 cites W2127490352 @default.
- W2026151704 cites W2128765501 @default.
- W2026151704 cites W2129131372 @default.
- W2026151704 cites W2129638195 @default.
- W2026151704 cites W2135127969 @default.
- W2026151704 cites W2136923821 @default.
- W2026151704 cites W2137366437 @default.
- W2026151704 cites W2138548210 @default.
- W2026151704 cites W2144006746 @default.
- W2026151704 cites W2145096794 @default.
- W2026151704 cites W2146422204 @default.
- W2026151704 cites W2150972708 @default.
- W2026151704 cites W2154332973 @default.
- W2026151704 cites W2156043924 @default.
- W2026151704 cites W2160979406 @default.
- W2026151704 cites W2168537135 @default.
- W2026151704 cites W2289917018 @default.
- W2026151704 cites W3101762025 @default.
- W2026151704 cites W3104197796 @default.
- W2026151704 cites W3105703423 @default.
- W2026151704 cites W4250955649 @default.
- W2026151704 doi "https://doi.org/10.1109/tsp.2014.2386300" @default.
- W2026151704 hasPublicationYear "2015" @default.
- W2026151704 type Work @default.
- W2026151704 sameAs 2026151704 @default.
- W2026151704 citedByCount "44" @default.
- W2026151704 countsByYear W20261517042014 @default.
- W2026151704 countsByYear W20261517042015 @default.
- W2026151704 countsByYear W20261517042016 @default.
- W2026151704 countsByYear W20261517042017 @default.
- W2026151704 countsByYear W20261517042018 @default.
- W2026151704 countsByYear W20261517042019 @default.
- W2026151704 countsByYear W20261517042020 @default.
- W2026151704 countsByYear W20261517042021 @default.
- W2026151704 countsByYear W20261517042022 @default.
- W2026151704 countsByYear W20261517042023 @default.
- W2026151704 crossrefType "journal-article" @default.
- W2026151704 hasAuthorship W2026151704A5022672030 @default.
- W2026151704 hasAuthorship W2026151704A5023497829 @default.
- W2026151704 hasAuthorship W2026151704A5033421780 @default.
- W2026151704 hasAuthorship W2026151704A5034104790 @default.
- W2026151704 hasBestOaLocation W20261517042 @default.
- W2026151704 hasConcept C105795698 @default.
- W2026151704 hasConcept C11413529 @default.
- W2026151704 hasConcept C117220453 @default.
- W2026151704 hasConcept C118615104 @default.
- W2026151704 hasConcept C121332964 @default.
- W2026151704 hasConcept C124851039 @default.
- W2026151704 hasConcept C126255220 @default.
- W2026151704 hasConcept C147764199 @default.
- W2026151704 hasConcept C158693339 @default.
- W2026151704 hasConcept C163716315 @default.
- W2026151704 hasConcept C2524010 @default.
- W2026151704 hasConcept C2781089630 @default.
- W2026151704 hasConcept C33923547 @default.
- W2026151704 hasConcept C39290043 @default.
- W2026151704 hasConcept C44139724 @default.
- W2026151704 hasConcept C48372109 @default.
- W2026151704 hasConcept C57273362 @default.
- W2026151704 hasConcept C62520636 @default.
- W2026151704 hasConcept C64812099 @default.
- W2026151704 hasConcept C67692717 @default.
- W2026151704 hasConcept C94375191 @default.
- W2026151704 hasConceptScore W2026151704C105795698 @default.
- W2026151704 hasConceptScore W2026151704C11413529 @default.
- W2026151704 hasConceptScore W2026151704C117220453 @default.