Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026157649> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2026157649 abstract "The main aim of this paper is to develop a suitable regression analysis model for describing the relationship between the index efficiency and the parameters of the Rival Penalized Competitive Learning Binary Tree (RPCL-b-tree). RPCL-b-tree is a hierarchical indexing structure built with a hierarchical RPCL clustering implementation, which transforms the feature space into a sequence of nested clusters. Based on the RPCL-b-tree, the efficient Nearest-Neighbor search for a query can be performed with the branch-and-bound algorithm. The index efficiency of a RPCL-b-tree relates to a set of parameters: leaf node size of the tree, number of retrieved objects per search, feature dimensionality and database size. To formulate this relationship, we develop a nonlinear regression model in this paper. This regression model includes two components. One is used to describe the relationship between index efficiency and the number of retrieved objects per search; another is to describe the relationship between index efficiency and leaf node size of a RPCL-b-tree. In both of these two components, we consider the influence from the database size and the feature dimensionality. Our experimental results show that the proposed regression model has a high convergibility and high generalization ability. Moreover, this regression model is explainable on its coefficients, whose values directly reflect the index efficiency of a RPCL-b-tree. Depending on the regression model and its estimated coefficients, we can easily analyze the index efficiency of a RPCL-b-tree to be built. Because the parameters of the different kinds of indexing structures are very similar, this model also is suitable to analyze the other kinds of indexing structures. Thus, it is a powerful tool to construct the optimal RPCL-b-tree or other kinds of indexing structures for a database." @default.
- W2026157649 created "2016-06-24" @default.
- W2026157649 creator A5000952432 @default.
- W2026157649 creator A5042251906 @default.
- W2026157649 date "2000-01-01" @default.
- W2026157649 modified "2023-09-24" @default.
- W2026157649 title "Regression analysis for Rival Penalized Competitive Learning Binary Tree" @default.
- W2026157649 cites W2074531160 @default.
- W2026157649 cites W2140360281 @default.
- W2026157649 cites W2168993425 @default.
- W2026157649 cites W2504196632 @default.
- W2026157649 cites W34376250 @default.
- W2026157649 doi "https://doi.org/10.1109/ijcnn.2000.859411" @default.
- W2026157649 hasPublicationYear "2000" @default.
- W2026157649 type Work @default.
- W2026157649 sameAs 2026157649 @default.
- W2026157649 citedByCount "0" @default.
- W2026157649 crossrefType "proceedings-article" @default.
- W2026157649 hasAuthorship W2026157649A5000952432 @default.
- W2026157649 hasAuthorship W2026157649A5042251906 @default.
- W2026157649 hasBestOaLocation W20261576492 @default.
- W2026157649 hasConcept C111030470 @default.
- W2026157649 hasConcept C113174947 @default.
- W2026157649 hasConcept C11413529 @default.
- W2026157649 hasConcept C134306372 @default.
- W2026157649 hasConcept C138885662 @default.
- W2026157649 hasConcept C153180895 @default.
- W2026157649 hasConcept C154945302 @default.
- W2026157649 hasConcept C163797641 @default.
- W2026157649 hasConcept C177148314 @default.
- W2026157649 hasConcept C197855036 @default.
- W2026157649 hasConcept C2776401178 @default.
- W2026157649 hasConcept C33923547 @default.
- W2026157649 hasConcept C41008148 @default.
- W2026157649 hasConcept C41895202 @default.
- W2026157649 hasConcept C73555534 @default.
- W2026157649 hasConceptScore W2026157649C111030470 @default.
- W2026157649 hasConceptScore W2026157649C113174947 @default.
- W2026157649 hasConceptScore W2026157649C11413529 @default.
- W2026157649 hasConceptScore W2026157649C134306372 @default.
- W2026157649 hasConceptScore W2026157649C138885662 @default.
- W2026157649 hasConceptScore W2026157649C153180895 @default.
- W2026157649 hasConceptScore W2026157649C154945302 @default.
- W2026157649 hasConceptScore W2026157649C163797641 @default.
- W2026157649 hasConceptScore W2026157649C177148314 @default.
- W2026157649 hasConceptScore W2026157649C197855036 @default.
- W2026157649 hasConceptScore W2026157649C2776401178 @default.
- W2026157649 hasConceptScore W2026157649C33923547 @default.
- W2026157649 hasConceptScore W2026157649C41008148 @default.
- W2026157649 hasConceptScore W2026157649C41895202 @default.
- W2026157649 hasConceptScore W2026157649C73555534 @default.
- W2026157649 hasLocation W20261576491 @default.
- W2026157649 hasLocation W20261576492 @default.
- W2026157649 hasOpenAccess W2026157649 @default.
- W2026157649 hasPrimaryLocation W20261576491 @default.
- W2026157649 hasRelatedWork W1510063698 @default.
- W2026157649 hasRelatedWork W1764328503 @default.
- W2026157649 hasRelatedWork W1797066109 @default.
- W2026157649 hasRelatedWork W1932154210 @default.
- W2026157649 hasRelatedWork W2044321793 @default.
- W2026157649 hasRelatedWork W2047878524 @default.
- W2026157649 hasRelatedWork W2057489614 @default.
- W2026157649 hasRelatedWork W2062627923 @default.
- W2026157649 hasRelatedWork W2112733287 @default.
- W2026157649 hasRelatedWork W2141666516 @default.
- W2026157649 hasRelatedWork W2143547348 @default.
- W2026157649 hasRelatedWork W2167925494 @default.
- W2026157649 hasRelatedWork W2205799314 @default.
- W2026157649 hasRelatedWork W2328538642 @default.
- W2026157649 hasRelatedWork W2396535097 @default.
- W2026157649 hasRelatedWork W2581202143 @default.
- W2026157649 hasRelatedWork W2962799159 @default.
- W2026157649 hasRelatedWork W593633726 @default.
- W2026157649 hasRelatedWork W2336797636 @default.
- W2026157649 hasRelatedWork W2506275762 @default.
- W2026157649 isParatext "false" @default.
- W2026157649 isRetracted "false" @default.
- W2026157649 magId "2026157649" @default.
- W2026157649 workType "article" @default.