Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026165722> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2026165722 endingPage "702" @default.
- W2026165722 startingPage "695" @default.
- W2026165722 abstract "Abstract An important aspect of the forging process is the design of preforms (or blockers) to achieve adequate metal distribution. In many cases determination of the preform configuration is a difficult task and art requiring skills acquired over many years. Currently available support is from skilled craftsmen, Finite Element (FE) simulation for axisymmetric components and Expert Systems. Each of these provides Inadequate support. The proposed research expects to establish a new technique — the interpolation of preform shapes for a component from manufacturing information for the family to which this component belongs. The technique will be proven by referring to the processing requirements of a family of plane-strain symmetrical H - spahed products. The research aims to establish an unified approach to use existing knowledge about the preform design, FEM simulation results and physical modelling experimental results to train a backpropagation feed forward neural network. The trained network is expected to interpolate within the component family to predict preform shapes. Exact dimensions for the preform can be determined by analytical approach or expert systems. This would reduce the involvement of time consuming FEM analysis and physical modelling for the design." @default.
- W2026165722 created "2016-06-24" @default.
- W2026165722 creator A5030789113 @default.
- W2026165722 creator A5039528423 @default.
- W2026165722 creator A5070209768 @default.
- W2026165722 date "1994-09-01" @default.
- W2026165722 modified "2023-09-26" @default.
- W2026165722 title "Interpolation of Forging preform shapes using neural networks" @default.
- W2026165722 cites W1979842512 @default.
- W2026165722 cites W1991107551 @default.
- W2026165722 cites W2015939279 @default.
- W2026165722 cites W2067400250 @default.
- W2026165722 doi "https://doi.org/10.1016/0924-0136(94)90420-0" @default.
- W2026165722 hasPublicationYear "1994" @default.
- W2026165722 type Work @default.
- W2026165722 sameAs 2026165722 @default.
- W2026165722 citedByCount "14" @default.
- W2026165722 countsByYear W20261657222021 @default.
- W2026165722 countsByYear W20261657222022 @default.
- W2026165722 countsByYear W20261657222023 @default.
- W2026165722 crossrefType "journal-article" @default.
- W2026165722 hasAuthorship W2026165722A5030789113 @default.
- W2026165722 hasAuthorship W2026165722A5039528423 @default.
- W2026165722 hasAuthorship W2026165722A5070209768 @default.
- W2026165722 hasConcept C104114177 @default.
- W2026165722 hasConcept C127413603 @default.
- W2026165722 hasConcept C137800194 @default.
- W2026165722 hasConcept C154945302 @default.
- W2026165722 hasConcept C192562407 @default.
- W2026165722 hasConcept C199639397 @default.
- W2026165722 hasConcept C41008148 @default.
- W2026165722 hasConcept C50644808 @default.
- W2026165722 hasConcept C78519656 @default.
- W2026165722 hasConcept C96494537 @default.
- W2026165722 hasConceptScore W2026165722C104114177 @default.
- W2026165722 hasConceptScore W2026165722C127413603 @default.
- W2026165722 hasConceptScore W2026165722C137800194 @default.
- W2026165722 hasConceptScore W2026165722C154945302 @default.
- W2026165722 hasConceptScore W2026165722C192562407 @default.
- W2026165722 hasConceptScore W2026165722C199639397 @default.
- W2026165722 hasConceptScore W2026165722C41008148 @default.
- W2026165722 hasConceptScore W2026165722C50644808 @default.
- W2026165722 hasConceptScore W2026165722C78519656 @default.
- W2026165722 hasConceptScore W2026165722C96494537 @default.
- W2026165722 hasIssue "1-4" @default.
- W2026165722 hasLocation W20261657221 @default.
- W2026165722 hasOpenAccess W2026165722 @default.
- W2026165722 hasPrimaryLocation W20261657221 @default.
- W2026165722 hasRelatedWork W174373548 @default.
- W2026165722 hasRelatedWork W2040537539 @default.
- W2026165722 hasRelatedWork W206589724 @default.
- W2026165722 hasRelatedWork W2079630551 @default.
- W2026165722 hasRelatedWork W2304766186 @default.
- W2026165722 hasRelatedWork W2511675108 @default.
- W2026165722 hasRelatedWork W2591352342 @default.
- W2026165722 hasRelatedWork W2885325552 @default.
- W2026165722 hasRelatedWork W2899084033 @default.
- W2026165722 hasRelatedWork W4307814257 @default.
- W2026165722 hasVolume "45" @default.
- W2026165722 isParatext "false" @default.
- W2026165722 isRetracted "false" @default.
- W2026165722 magId "2026165722" @default.
- W2026165722 workType "article" @default.