Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026210882> ?p ?o ?g. }
- W2026210882 endingPage "224" @default.
- W2026210882 startingPage "211" @default.
- W2026210882 abstract "The effect of climatic change on tropical vegetation is of global and regional concern because of the high biodiversity and the potential feedback to the carbon, water, and nutrient cycles. One of the most critical aspects for assessing broad-scale consequences of climate change is our understanding of how vegetation may change. Models relating vegetation and environmental conditions can be developed for large regions. For a simple application of static models of vegetation–environment relationships, one would have to assume that the probability of species (or vegetation) occurrence conditional on environmental conditions is constant in time (abbreviated as the POCEC assumption). This assumption is critical and difficult. In this paper, we evaluate how the spatial arrangement of forest pattern may constrain vegetation change as predicted by a spatially static artificial neural network (ANN) model. We have relaxed the POCEC assumption by subjoining a spatially dynamic component based on the cellular automata approach. The ANN model quantifies a most suitable forest type based on the conditional probability of vegetation in the environmental space, whereas the cellular automata model imposes spatial constraints on the transition to the best-suited type. We adapt the cellular automata algorithm to successively increase spatial constraints, hence relaxing the POCEC assumption. Our study area is located in Northern Queensland and encompasses 20 000 km2. We evaluate the effect of the +1 °C mean annual temperature and the −10% mean annual precipitation change. A comparison of predictions of vegetation change with the different models indicates that the spatial arrangement of vegetation in the ‘Wet Tropics’ region may impose relatively few constraints for the region's potential change. Depending on the strength of spatial effects included in the models, the predicted future vegetation patterns differ from 1 to 10% of the study area. However, if in addition to spatial constraints ecological constraints also are considered (e.g. prohibiting several transitions that would appear very unlikely to experienced forest researchers), the predictions may differ by as much as 27%, showing a relatively strong dependence of predictions on assumptions about patch-level processes. Furthermore, using different models allows us to assess the uncertainty associated with predictions. The results demonstrate a relative certainty of a predicted decrease of notophyll rainforest types and an increase of medium open forests and woodlands, respectively, whereas the predictions of mesophyll vine forest and wet sclerophyll vegetation differ strongly among different models." @default.
- W2026210882 created "2016-06-24" @default.
- W2026210882 creator A5022974472 @default.
- W2026210882 creator A5062002719 @default.
- W2026210882 creator A5074069462 @default.
- W2026210882 date "2001-11-01" @default.
- W2026210882 modified "2023-10-18" @default.
- W2026210882 title "The effect of climate change on tropical rainforest vegetation pattern" @default.
- W2026210882 cites W144913852 @default.
- W2026210882 cites W174634098 @default.
- W2026210882 cites W192395927 @default.
- W2026210882 cites W1938225006 @default.
- W2026210882 cites W1981581707 @default.
- W2026210882 cites W1983934196 @default.
- W2026210882 cites W1988432167 @default.
- W2026210882 cites W1990262490 @default.
- W2026210882 cites W1994217680 @default.
- W2026210882 cites W1998750112 @default.
- W2026210882 cites W1998951281 @default.
- W2026210882 cites W2009457654 @default.
- W2026210882 cites W2011435649 @default.
- W2026210882 cites W2022909546 @default.
- W2026210882 cites W2023607294 @default.
- W2026210882 cites W2030885392 @default.
- W2026210882 cites W2031217053 @default.
- W2026210882 cites W2040916704 @default.
- W2026210882 cites W2046594968 @default.
- W2026210882 cites W2061747364 @default.
- W2026210882 cites W2065332076 @default.
- W2026210882 cites W2069467349 @default.
- W2026210882 cites W2072714551 @default.
- W2026210882 cites W2080816199 @default.
- W2026210882 cites W2081964130 @default.
- W2026210882 cites W2086550952 @default.
- W2026210882 cites W2086882706 @default.
- W2026210882 cites W2096818211 @default.
- W2026210882 cites W2115707055 @default.
- W2026210882 cites W2120160157 @default.
- W2026210882 cites W2127425291 @default.
- W2026210882 cites W2136641634 @default.
- W2026210882 cites W2157419951 @default.
- W2026210882 cites W2169536548 @default.
- W2026210882 cites W2316727092 @default.
- W2026210882 cites W2326383560 @default.
- W2026210882 cites W235427555 @default.
- W2026210882 cites W2512081857 @default.
- W2026210882 cites W2514715339 @default.
- W2026210882 cites W2796407663 @default.
- W2026210882 cites W4242419991 @default.
- W2026210882 cites W4247279085 @default.
- W2026210882 doi "https://doi.org/10.1016/s0304-3800(01)00392-1" @default.
- W2026210882 hasPublicationYear "2001" @default.
- W2026210882 type Work @default.
- W2026210882 sameAs 2026210882 @default.
- W2026210882 citedByCount "50" @default.
- W2026210882 countsByYear W20262108822012 @default.
- W2026210882 countsByYear W20262108822013 @default.
- W2026210882 countsByYear W20262108822014 @default.
- W2026210882 countsByYear W20262108822015 @default.
- W2026210882 countsByYear W20262108822016 @default.
- W2026210882 countsByYear W20262108822017 @default.
- W2026210882 countsByYear W20262108822018 @default.
- W2026210882 countsByYear W20262108822019 @default.
- W2026210882 countsByYear W20262108822020 @default.
- W2026210882 countsByYear W20262108822023 @default.
- W2026210882 crossrefType "journal-article" @default.
- W2026210882 hasAuthorship W2026210882A5022974472 @default.
- W2026210882 hasAuthorship W2026210882A5062002719 @default.
- W2026210882 hasAuthorship W2026210882A5074069462 @default.
- W2026210882 hasConcept C100970517 @default.
- W2026210882 hasConcept C107054158 @default.
- W2026210882 hasConcept C11413529 @default.
- W2026210882 hasConcept C130217890 @default.
- W2026210882 hasConcept C132651083 @default.
- W2026210882 hasConcept C142724271 @default.
- W2026210882 hasConcept C153294291 @default.
- W2026210882 hasConcept C158709400 @default.
- W2026210882 hasConcept C18903297 @default.
- W2026210882 hasConcept C205649164 @default.
- W2026210882 hasConcept C2619416 @default.
- W2026210882 hasConcept C2776133958 @default.
- W2026210882 hasConcept C35527583 @default.
- W2026210882 hasConcept C39432304 @default.
- W2026210882 hasConcept C41008148 @default.
- W2026210882 hasConcept C71924100 @default.
- W2026210882 hasConcept C86803240 @default.
- W2026210882 hasConcept C91492127 @default.
- W2026210882 hasConceptScore W2026210882C100970517 @default.
- W2026210882 hasConceptScore W2026210882C107054158 @default.
- W2026210882 hasConceptScore W2026210882C11413529 @default.
- W2026210882 hasConceptScore W2026210882C130217890 @default.
- W2026210882 hasConceptScore W2026210882C132651083 @default.
- W2026210882 hasConceptScore W2026210882C142724271 @default.
- W2026210882 hasConceptScore W2026210882C153294291 @default.
- W2026210882 hasConceptScore W2026210882C158709400 @default.
- W2026210882 hasConceptScore W2026210882C18903297 @default.
- W2026210882 hasConceptScore W2026210882C205649164 @default.
- W2026210882 hasConceptScore W2026210882C2619416 @default.