Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026245239> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2026245239 endingPage "114" @default.
- W2026245239 startingPage "99" @default.
- W2026245239 abstract "The early diagenetic evolution of pore-water chemistry is closely linked to mineralization reactions which consume significant portions of the metabolites released by bacterial organic matter decomposition. These reactions are most intense in high-sedimentation rate basins and include the precipitation of iron-sulfides and various carbonates leading to concretion growth. Early diagenetic pyrite is typically framboidal attesting to its recrystallization from precursor mackinawite, greigite or amorphous FeS which are the favored phases at high supersaturation levels during the initial sulfate reduction stages. The sulfur isotopic composition of early diagnetic pyrite can be used to differentiate diffusion-controlled, open-system conditions with isotopically light sulfide (δ 34S = − 35 to − 20‰) from closed system conditions, under which Raleigh distillation produces increasingly heaver sulfide (δ 34 S = − 35 to + 18‰). Alabandite (Mn-sulfide) is a rare authigenic sulfide in Mn-rich environments such as certain restricted, semi-stagnant basins (Baltic Sea). pH-buffering by hydrogen sulfide and hydrogen ion uptake by the reduction of manganese and iron oxides and hydroxides in the nitrate and sulfate reduction zones raise the pH sufficiently to cause supersaturation of the porewaters with respect to Ca-, Mg-, Fe- and Mn-carbonates and complex solid solutions of them. Fe-carbonates cannot form in the sulfate reduction zone in the presence of dissolved sulfide which competes for the dissolved iron. Likewise, dolomite formation appears to be inhibited or slowed down in the presence of substantial dissolved sulfate. The appearance of siderite and ankerite therefore signals carbonate precipitation below the sulfate reduction zone. Supporting evidence for the early diagenetic origin of many carbonate concertions is provided by their high carbonate contents (70 to 90% reflecting the porosity existing at the time of precipitation, called “minus-cement porosity”), isotopic composition, clay fabrics, and preservation of original bedding features including the shapes of fossils and fecal pellets. In these environments increasing carbon isotope ratios (δ 13 C = − 20 to + 15‰) indicate concretion growth below the sulfate reduction zone, i.e., in the methane generation zones. Continuing concretion growth at greater burial depth explains pore water profiles with constantly low Ca and downward decreasing Mg concentrations. Dissolved ammonia and phosphate profiles reguire adsorption and ion-exchange reactions as additional removal machanisms (besides apatite precipitation) in order to explain their downward decrease after they have reached maximum concentrations below the alkalinity maximum. Classification of early diagnetic environments into oxic and anoxic and further subdivision of the latter into sulfidic and non-sulfidic (with suboxic or post-oxic and methanic as further subcategories of the non-sulfidic environment) according to Berner (1981) is preferred over the previous classification in terms of pH/Eh fields. The temperature range of the early diagenetic stage extends from O to about 75°C, at which temperature thermocatalytic organic matter decomposition replaces the earlier bacterially mediated reactions and causes a whole set of new diagenetic reactions (such as feldspar dissolution, smectite to illite transformation) to start." @default.
- W2026245239 created "2016-06-24" @default.
- W2026245239 creator A5085898202 @default.
- W2026245239 date "1987-04-01" @default.
- W2026245239 modified "2023-09-26" @default.
- W2026245239 title "Hydrochemistry, origin and evolution of sedimentary subsurface fluids: III. Early diagenetic mineralization reactions in high sedimentation—rate basins" @default.
- W2026245239 cites W1969494113 @default.
- W2026245239 cites W1971044324 @default.
- W2026245239 cites W1973349761 @default.
- W2026245239 cites W1974521731 @default.
- W2026245239 cites W1979849483 @default.
- W2026245239 cites W1994270148 @default.
- W2026245239 cites W2015379021 @default.
- W2026245239 cites W2015511773 @default.
- W2026245239 cites W2023068580 @default.
- W2026245239 cites W2029487743 @default.
- W2026245239 cites W2032278006 @default.
- W2026245239 cites W2035769827 @default.
- W2026245239 cites W2044477877 @default.
- W2026245239 cites W2051295811 @default.
- W2026245239 cites W2065491467 @default.
- W2026245239 cites W2071091649 @default.
- W2026245239 cites W2077929362 @default.
- W2026245239 cites W2081641920 @default.
- W2026245239 cites W2083528926 @default.
- W2026245239 cites W2103952139 @default.
- W2026245239 cites W2320966973 @default.
- W2026245239 cites W4231995025 @default.
- W2026245239 cites W423852504 @default.
- W2026245239 doi "https://doi.org/10.1007/bf02872212" @default.
- W2026245239 hasPublicationYear "1987" @default.
- W2026245239 type Work @default.
- W2026245239 sameAs 2026245239 @default.
- W2026245239 citedByCount "1" @default.
- W2026245239 countsByYear W20262452392018 @default.
- W2026245239 crossrefType "journal-article" @default.
- W2026245239 hasAuthorship W2026245239A5085898202 @default.
- W2026245239 hasConcept C115393850 @default.
- W2026245239 hasConcept C127313418 @default.
- W2026245239 hasConcept C130452526 @default.
- W2026245239 hasConcept C17409809 @default.
- W2026245239 hasConcept C178790620 @default.
- W2026245239 hasConcept C179104552 @default.
- W2026245239 hasConcept C185592680 @default.
- W2026245239 hasConcept C2776016504 @default.
- W2026245239 hasConcept C2776062231 @default.
- W2026245239 hasConcept C2776117905 @default.
- W2026245239 hasConcept C2777807490 @default.
- W2026245239 hasConcept C2778343803 @default.
- W2026245239 hasConcept C2778891929 @default.
- W2026245239 hasConcept C2780596425 @default.
- W2026245239 hasConcept C2780659211 @default.
- W2026245239 hasConcept C518881349 @default.
- W2026245239 hasConceptScore W2026245239C115393850 @default.
- W2026245239 hasConceptScore W2026245239C127313418 @default.
- W2026245239 hasConceptScore W2026245239C130452526 @default.
- W2026245239 hasConceptScore W2026245239C17409809 @default.
- W2026245239 hasConceptScore W2026245239C178790620 @default.
- W2026245239 hasConceptScore W2026245239C179104552 @default.
- W2026245239 hasConceptScore W2026245239C185592680 @default.
- W2026245239 hasConceptScore W2026245239C2776016504 @default.
- W2026245239 hasConceptScore W2026245239C2776062231 @default.
- W2026245239 hasConceptScore W2026245239C2776117905 @default.
- W2026245239 hasConceptScore W2026245239C2777807490 @default.
- W2026245239 hasConceptScore W2026245239C2778343803 @default.
- W2026245239 hasConceptScore W2026245239C2778891929 @default.
- W2026245239 hasConceptScore W2026245239C2780596425 @default.
- W2026245239 hasConceptScore W2026245239C2780659211 @default.
- W2026245239 hasConceptScore W2026245239C518881349 @default.
- W2026245239 hasIssue "2" @default.
- W2026245239 hasLocation W20262452391 @default.
- W2026245239 hasOpenAccess W2026245239 @default.
- W2026245239 hasPrimaryLocation W20262452391 @default.
- W2026245239 hasRelatedWork W1972566244 @default.
- W2026245239 hasRelatedWork W1973392970 @default.
- W2026245239 hasRelatedWork W1975481414 @default.
- W2026245239 hasRelatedWork W2006207779 @default.
- W2026245239 hasRelatedWork W2010017574 @default.
- W2026245239 hasRelatedWork W2066620874 @default.
- W2026245239 hasRelatedWork W2092032146 @default.
- W2026245239 hasRelatedWork W2136245223 @default.
- W2026245239 hasRelatedWork W3027150706 @default.
- W2026245239 hasRelatedWork W3109094992 @default.
- W2026245239 hasVolume "6" @default.
- W2026245239 isParatext "false" @default.
- W2026245239 isRetracted "false" @default.
- W2026245239 magId "2026245239" @default.
- W2026245239 workType "article" @default.