Matches in SemOpenAlex for { <https://semopenalex.org/work/W2026393418> ?p ?o ?g. }
- W2026393418 endingPage "377" @default.
- W2026393418 startingPage "367" @default.
- W2026393418 abstract "The analysis of telemetry data obtained from tagged animals often requires that a smooth surface of spatial usage is fitted to the observations. Well‐established statistical techniques for doing this, such as kernel smoothing (KS), are based on asymptotic arguments that guarantee the convergence of their estimates to the truth with increasing sample size. Often, in addition to telemetry data, ecologists have access to a wealth of information relating to the animals’ distribution and movement. This additional information is potentially useful for the estimation of spatial usage but currently remains unused by existing methods. In this paper, I outline and begin the validation of model‐supervised kernel smoothing (MSKS), a modification of KS that uses such information to supervise surface‐fitting to telemetry data. MSKS initially requires an ad‐hoc synthesis of all the available information, excluding telemetry, into an auxiliary usage surface (the model). This is then combined with the kernel‐smoothed telemetry data into a hybrid surface that is the weighted average of the two. Automatic selection of the smoothing coefficient and the weight associated with the model is done by means of likelihood cross‐validation. I examine the performance of MSKS first, by extensive, numerical exploration on simulated data in one‐dimensional space and second, on two‐dimensional data obtained from an individual‐based simulation of a central‐place forager. The results for different models and sample sizes indicate that MSKS has three important properties. Firstly, it generally outperforms KS by an extent that depends on the quality of the auxiliary model. Secondly, when the auxiliary model is not informative, MSKS automatically reverts to a similar output as KS. Finally, in practical terms, MSKS is easy to implement and adds little to the computational requirements already made by KS methods. I illustrate the application of MSKS and further validate its performance on satellite telemetry data collected from a grey seal on the east coast of Scotland." @default.
- W2026393418 created "2016-06-24" @default.
- W2026393418 creator A5012720814 @default.
- W2026393418 date "2003-07-04" @default.
- W2026393418 modified "2023-10-14" @default.
- W2026393418 title "Model-supervised kernel smoothing for the estimation of spatial usage" @default.
- W2026393418 cites W1970403163 @default.
- W2026393418 cites W1988138834 @default.
- W2026393418 cites W1988184547 @default.
- W2026393418 cites W1997580656 @default.
- W2026393418 cites W2000297055 @default.
- W2026393418 cites W2005123899 @default.
- W2026393418 cites W2012684791 @default.
- W2026393418 cites W2016381904 @default.
- W2026393418 cites W2072069733 @default.
- W2026393418 cites W2075316439 @default.
- W2026393418 cites W2086822661 @default.
- W2026393418 cites W2101348276 @default.
- W2026393418 cites W2116102968 @default.
- W2026393418 cites W2125214271 @default.
- W2026393418 cites W2130758326 @default.
- W2026393418 cites W2146610445 @default.
- W2026393418 cites W2161206953 @default.
- W2026393418 cites W2164628317 @default.
- W2026393418 cites W2323452353 @default.
- W2026393418 cites W2324474241 @default.
- W2026393418 cites W2494084875 @default.
- W2026393418 cites W4233014035 @default.
- W2026393418 doi "https://doi.org/10.1034/j.1600-0706.2003.12528.x" @default.
- W2026393418 hasPublicationYear "2003" @default.
- W2026393418 type Work @default.
- W2026393418 sameAs 2026393418 @default.
- W2026393418 citedByCount "38" @default.
- W2026393418 countsByYear W20263934182012 @default.
- W2026393418 countsByYear W20263934182013 @default.
- W2026393418 countsByYear W20263934182014 @default.
- W2026393418 countsByYear W20263934182015 @default.
- W2026393418 countsByYear W20263934182017 @default.
- W2026393418 countsByYear W20263934182019 @default.
- W2026393418 countsByYear W20263934182021 @default.
- W2026393418 crossrefType "journal-article" @default.
- W2026393418 hasAuthorship W2026393418A5012720814 @default.
- W2026393418 hasConcept C105795698 @default.
- W2026393418 hasConcept C114614502 @default.
- W2026393418 hasConcept C119857082 @default.
- W2026393418 hasConcept C122280245 @default.
- W2026393418 hasConcept C12267149 @default.
- W2026393418 hasConcept C124101348 @default.
- W2026393418 hasConcept C129848803 @default.
- W2026393418 hasConcept C159620131 @default.
- W2026393418 hasConcept C162324750 @default.
- W2026393418 hasConcept C183121708 @default.
- W2026393418 hasConcept C185429906 @default.
- W2026393418 hasConcept C185592680 @default.
- W2026393418 hasConcept C198531522 @default.
- W2026393418 hasConcept C27406209 @default.
- W2026393418 hasConcept C2777303404 @default.
- W2026393418 hasConcept C31972630 @default.
- W2026393418 hasConcept C33923547 @default.
- W2026393418 hasConcept C3770464 @default.
- W2026393418 hasConcept C41008148 @default.
- W2026393418 hasConcept C43617362 @default.
- W2026393418 hasConcept C50522688 @default.
- W2026393418 hasConcept C71134354 @default.
- W2026393418 hasConcept C74193536 @default.
- W2026393418 hasConcept C75866337 @default.
- W2026393418 hasConcept C76155785 @default.
- W2026393418 hasConceptScore W2026393418C105795698 @default.
- W2026393418 hasConceptScore W2026393418C114614502 @default.
- W2026393418 hasConceptScore W2026393418C119857082 @default.
- W2026393418 hasConceptScore W2026393418C122280245 @default.
- W2026393418 hasConceptScore W2026393418C12267149 @default.
- W2026393418 hasConceptScore W2026393418C124101348 @default.
- W2026393418 hasConceptScore W2026393418C129848803 @default.
- W2026393418 hasConceptScore W2026393418C159620131 @default.
- W2026393418 hasConceptScore W2026393418C162324750 @default.
- W2026393418 hasConceptScore W2026393418C183121708 @default.
- W2026393418 hasConceptScore W2026393418C185429906 @default.
- W2026393418 hasConceptScore W2026393418C185592680 @default.
- W2026393418 hasConceptScore W2026393418C198531522 @default.
- W2026393418 hasConceptScore W2026393418C27406209 @default.
- W2026393418 hasConceptScore W2026393418C2777303404 @default.
- W2026393418 hasConceptScore W2026393418C31972630 @default.
- W2026393418 hasConceptScore W2026393418C33923547 @default.
- W2026393418 hasConceptScore W2026393418C3770464 @default.
- W2026393418 hasConceptScore W2026393418C41008148 @default.
- W2026393418 hasConceptScore W2026393418C43617362 @default.
- W2026393418 hasConceptScore W2026393418C50522688 @default.
- W2026393418 hasConceptScore W2026393418C71134354 @default.
- W2026393418 hasConceptScore W2026393418C74193536 @default.
- W2026393418 hasConceptScore W2026393418C75866337 @default.
- W2026393418 hasConceptScore W2026393418C76155785 @default.
- W2026393418 hasIssue "2" @default.
- W2026393418 hasLocation W20263934181 @default.
- W2026393418 hasOpenAccess W2026393418 @default.
- W2026393418 hasPrimaryLocation W20263934181 @default.
- W2026393418 hasRelatedWork W1602884087 @default.
- W2026393418 hasRelatedWork W1976101200 @default.